"""TODO(xquad): Add a description here.""" import json import os import datasets from datasets.tasks import QuestionAnsweringExtractive _CITATION = """\ @article{Artetxe:etal:2019, author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama}, title = {On the cross-lingual transferability of monolingual representations}, journal = {CoRR}, volume = {abs/1910.11856}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.11856} } """ _DESCRIPTION = """\ XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindi and Romanian. Consequently, the dataset is entirely parallel across 12 languages. """ _URL = "https://raw.githubusercontent.com/summer1030/xquad-split/main/" _LANG = ["th"] _TRAIN_FILE = "train.json" _VALID_FILE = "val.json" _TEST_FILE = "test.json" class XquadConfig(datasets.BuilderConfig): """BuilderConfig for Xquad""" def __init__(self, **kwargs): """ Args: lang: string, language for the input text **kwargs: keyword arguments forwarded to super. """ super(XquadConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) class Xquad(datasets.GeneratorBasedBuilder): """TODO(xquad): Short description of my dataset.""" # TODO(xquad): Set up version. VERSION = datasets.Version("1.0.0") #BUILDER_CONFIGS = [XquadConfig(name=f"xquad.{lang}", description=_DESCRIPTION, lang=lang) for lang in _LANG] BUILDER_CONFIGS = [ XquadConfig( name="xquad.th.split", description=_DESCRIPTION, ), ] def _info(self): # TODO(xquad): Specifies the datasets.DatasetInfo object return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "id": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), # These are the features of your dataset like images, labels ... } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage="https://github.com/deepmind/xquad", citation=_CITATION, task_templates=[ QuestionAnsweringExtractive( question_column="question", context_column="context", answers_column="answers" ) ], ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO(xquad): Downloads the data and defines the splits # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs urls_to_download = {'TRAIN': _URL + _TRAIN_FILE, 'VALID':_URL + _VALID_FILE, 'TEST':_URL + _TEST_FILE, } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": downloaded_files['TRAIN']}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": downloaded_files['VALID']}, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": downloaded_files['TEST']}, ), ] def _generate_examples(self, filepath): """Yields examples.""" # TODO(xquad): Yields (key, example) tuples from the dataset with open(filepath, encoding="utf-8") as f: xquad = json.load(f) id_ = 0 for article in xquad["data"]: for paragraph in article["paragraphs"]: context = paragraph["context"].strip() for qa in paragraph["qas"]: question = qa["question"].strip() answer_starts = [answer["answer_start"] for answer in qa["answers"]] answers = [answer["text"].strip() for answer in qa["answers"]] # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield id_, { "context": context, "question": question, "id": qa["id"], "answers": { "answer_start": answer_starts, "text": answers, }, } id_ += 1