import os from pandas import read_csv from datasets import GeneratorBasedBuilder, Value, Version, BuilderConfig, Features, DatasetInfo, SplitGenerator, Split, Audio, Sequence _DESCRIPTION = ''' The dataset contains threads parsed from the /b/ board of 2ch archive ''' _HOMEPAGE = 'https://huggingface.co/datasets/zeio/batch' _LICENSE = 'Apache License Version 2.0' _CLUSTER = '{first_page:04d}-{last_page:04d}' _URLS = { 'written': 'https://huggingface.co/datasets/zeio/batch/resolve/main/threads-compressed/{cluster}.tar.xz', 'spoken': 'https://huggingface.co/datasets/zeio/batch-speech/raw/main/threads-compressed/{cluster}.tar.xz' } _INDEX = 'https://huggingface.co/datasets/zeio/batch/resolve/main/index.tsv' _N_ITEMS = 1750 _N_BATCH = 20 class Batch(GeneratorBasedBuilder): VERSION = Version('06.11.2023') BUILDER_CONFIGS = [ BuilderConfig( name = 'written', version = VERSION, description = 'The base modification which contains only text representation of threads, which are divided into topics, which in turn are made of posts' ), BuilderConfig( name = 'spoken', version = VERSION, description = ( 'An extended configuration of the dataset in which besides text some threads have an associated audio data with speech ' 'generated for text in the respective thread using an alternating speaker pattern' ) ) ] DEFAULT_CONFIG_NAME = 'written' def _info(self): if self.config.name == 'written': features = Features({ 'title': Value('string'), 'topics': Sequence({ 'posts': Sequence({ 'text': Value('string') }) }) }) elif self.config.name == 'spoken': features = Features({ 'title': Value('string'), 'speech': Audio(sampling_rate = 48_000), 'topics': Sequence({ 'posts': Sequence({ 'text': Value('string') }) }) }) else: raise ValueError(f'Unknown config: {self.config.name}') return DatasetInfo( description=_DESCRIPTION, features = features, homepage=_HOMEPAGE, license=_LICENSE ) def _split_generators(self, dl_manager): name = self.config.name url = _URLS['written'] spoken_url = _URLS['spoken'] if name == 'spoken' else None offset = 0 written = {} spoken = None if spoken_url is None else {} while offset < _N_ITEMS: cluster = _CLUSTER.format(first_page = offset, last_page = (offset := min(offset + _N_BATCH - 1, _N_ITEMS))) written[f'threads/{cluster}'] = dl_manager.download_and_extract(url.format(cluster = cluster)) if spoken is not None: try: spoken[f'threads/{cluster}'] = dl_manager.download_and_extract(spoken_url.format(cluster = cluster)) except: # speech for some clusters may be missing pass index = dl_manager.download_and_extract(_INDEX) # print(clusters) # print(index) return [ SplitGenerator( name = Split.TRAIN, gen_kwargs = { 'written': written, 'spoken': spoken, 'index': index } ) ] def _generate_examples(self, written: dict, index: str, spoken: dict = None): for i, row in read_csv(index, sep = '\t').iterrows(): # print(row) path = os.path.join(written[row['path']], f'{row["thread"]}.txt') topics = [] posts = [] # def append_topic(): # nonlocal posts, topics # if len(posts) > 0: # topics.append({'posts': posts}) # posts = [] with open(path, 'r', encoding = 'utf-8') as file: for line in file.read().split('\n'): if line: posts.append({'text': line}) # else: # append_topic() elif len(posts) > 0: topics.append({'posts': posts}) posts = [] # append_topic() item = { 'title': row['title'], 'topics': topics } if spoken is not None: speech_cluster_path = spoken.get(row['path']) if speech_cluster_path is not None: speech_file_path = os.path.join(speech_cluster_path, f'{row["thread"]}.mp3') if os.path.isfile(speech_file_path): item['speech'] = speech_file_path yield i, item # if sound is None: # yield i, dict(row) # else: # data = dict(row) # folder = data['folder'] # filename = data['filename'] # if folder == folder and filename == filename: # if folder and filename are not nan # data['sound'] = os.path.join(sound, folder, f'{filename}.ogg') # else: # data['sound'] = NA # data.pop('folder') # data.pop('filename') # yield i, data