# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """CiteSum dataset""" import hashlib import os import datasets logger = datasets.logging.get_logger(__name__) _HOMEPAGE = "https://github.com/morningmoni/CiteSum" _DESCRIPTION = """\ Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation CiteSum contains TLDR summaries for scientific papers from their citation texts without human annotation. CiteSum is around 30 times larger than the previous human-curated dataset SciTLDR. """ # The second citation introduces the source data, while the first # introduces the specific form (non-anonymized) we use here. _CITATION = """\ @misc{https://doi.org/10.48550/arxiv.2205.06207, doi = {10.48550/ARXIV.2205.06207}, url = {https://arxiv.org/abs/2205.06207}, author = {Mao, Yuning and Zhong, Ming and Han, Jiawei}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {CiteSum: Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } """ _DOWNLOAD_URL = "https://drive.google.com/file/d/1ndHCREXGSPnDUNllladh9qCtayqbXAfJ" class CiteSumConfig(datasets.BuilderConfig): """BuilderConfig for CiteSum.""" def __init__(self, **kwargs): """BuilderConfig for CiteSum. Args: **kwargs: keyword arguments forwarded to super. """ super().__init__(**kwargs) class CiteSum(datasets.GeneratorBasedBuilder): """CiteSum summarization dataset.""" BUILDER_CONFIGS = [CiteSumConfig(name="citesum", description="Plain text")] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "src": datasets.Value("string"), "tgt": datasets.Value("string"), "paper_id": datasets.Value("string"), "title": datasets.Value("string"), "discipline": { "venue": datasets.Value("string"), "journal": datasets.Value("string"), "mag_field_of_study": datasets.features.Sequence( datasets.Value("string") ), }, } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): dl_paths = dl_manager.download(_DOWNLOAD_URL) return [ datasets.SplitGenerator( name=split, gen_kwargs={ "urls_file": dl_paths[split], "files_per_archive": [ dl_manager.iter_archive(dl_paths["cnn_stories"]), dl_manager.iter_archive(dl_paths["dm_stories"]), ], }, ) for split in [ datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST, ] ] def _generate_examples(self, urls_file, files_per_archive): urls = _get_url_hashes(urls_file) idx = 0 for files in files_per_archive: for path, file in files: hash_from_path = _get_hash_from_path(path) if hash_from_path in urls: article, highlights = _get_art_abs(file, self.config.version) if not article or not highlights: continue yield idx, { _ARTICLE: article, _HIGHLIGHTS: highlights, "id": hash_from_path, } idx += 1