# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Spider: A Large-Scale Human-Labeled Dataset for Text-to-SQL Tasks""" import json import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{yu2018spider, title={Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task}, author={Yu, Tao and Zhang, Rui and Yang, Kai and Yasunaga, Michihiro and Wang, Dongxu and Li, Zifan and Ma, James and Li, Irene and Yao, Qingning and Roman, Shanelle and others}, journal={arXiv preprint arXiv:1809.08887}, year={2018} } """ _DESCRIPTION = """\ Spider is a large-scale complex and cross-domain semantic parsing and text-toSQL dataset annotated by 11 college students """ _HOMEPAGE = "https://yale-lily.github.io/spider" _LICENSE = "CC BY-SA 4.0" _URL = "https://drive.google.com/uc?export=download&id=1_AckYkinAnhqmRQtGsQgUKAnTHxxX5J0" class Spider(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="spider", version=VERSION, description="Spider: A Large-Scale Human-Labeled Dataset for Text-to-SQL Tasks", ), ] def _info(self): features = datasets.Features( { "db_id": datasets.Value("string"), "query": datasets.Value("string"), "question": datasets.Value("string"), "query_toks": datasets.features.Sequence(datasets.Value("string")), "query_toks_no_value": datasets.features.Sequence(datasets.Value("string")), "question_toks": datasets.features.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_filepath = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_filepath": downloaded_filepath + "/spider/train_spider.json", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_filepath": downloaded_filepath + "/spider/dev.json", }, ), ] def _generate_examples(self, data_filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", data_filepath) with open(data_filepath, encoding="utf-8") as f: spider = json.load(f) for idx, sample in enumerate(spider): yield idx, { "db_id": sample["db_id"], "query": sample["query"], "question": sample["question"], "query_toks": sample["query_toks"], "query_toks_no_value": sample["query_toks_no_value"], "question_toks": sample["question_toks"], }