wwydmanski's picture
Update README.md
4e41c4d
---
task_categories:
- tabular-classification
tags:
- tabular
- breast-cancer
pretty_name: WisconsinBreastCancerDiagnostic
size_categories:
- n<1K
---
## Source:
Copied from the [original dataset](https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic))
### Creators:
1. Dr. William H. Wolberg, General Surgery Dept.
University of Wisconsin, Clinical Sciences Center
Madison, WI 53792
wolberg '@' eagle.surgery.wisc.edu
2. W. Nick Street, Computer Sciences Dept.
University of Wisconsin, 1210 West Dayton St., Madison, WI 53706
street '@' cs.wisc.edu 608-262-6619
3. Olvi L. Mangasarian, Computer Sciences Dept.
University of Wisconsin, 1210 West Dayton St., Madison, WI 53706
olvi '@' cs.wisc.edu
### Donor:
Nick Street
## Data Set Information:
Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. A few of the images can be found at [Web Link]
Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.
The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].
This database is also available through the UW CS ftp server:
ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/
### Attribute Information:
1) ID number
2) Diagnosis (M = malignant, B = benign)
3-32)
Ten real-valued features are computed for each cell nucleus:
a) radius (mean of distances from center to points on the perimeter)
b) texture (standard deviation of gray-scale values)
c) perimeter
d) area
e) smoothness (local variation in radius lengths)
f) compactness (perimeter^2 / area - 1.0)
g) concavity (severity of concave portions of the contour)
h) concave points (number of concave portions of the contour)
i) symmetry
j) fractal dimension ("coastline approximation" - 1)