import os from collections import defaultdict from typing import List import datasets from datasets import Sequence, Value, load_dataset from .process import process_text, get_structured_data from typing import List from math import ceil from .configs import SUB_DATASETS def processing(data, name): if name == "processed": data['text'] = [process_text(text) for text in data['text']] elif name == "structured": data['text'] = [process_text(text) for text in data['text']] data['structured_text'] = [ get_structured_data(text, default_value={"item": [], "content": []}) for text in data['text'] ] return data def sliding(texts: List[str], window_size: int=5, stride:int=3) -> List[str]: n_iter = ceil((len(texts)-window_size)/stride)+1 return [texts[i*stride:i*stride+window_size] for i in range(n_iter)] class NamuWiki(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = SUB_DATASETS def _info(self): return datasets.DatasetInfo( description="", features=self.config.features, homepage=self.config.url, citation=self.config.citation + "\n" + "", ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: if self.config.name == "processed": data_file = dl_manager.download(self.config.data_url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": data_file, "split": "train" } ), ] elif self.config.name.startswith(("char", "word")): _, length = self.config.name.split("-") length = int(length) data_file = dl_manager.download(self.config.data_url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": data_file, "split": "train", "length": length } ), ] elif self.config.name == "raw": data_file = dl_manager.download_and_extract(self.config.data_url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": os.path.join(data_file, "namuwiki_20210301.json"), "split": "train" } ), ] def _generate_examples(self, data_file, split, length=None): os.system("pip install ijson") import ijson """Generate NamuWiki examples.""" _TARGET = {"title", "text", "contributors.item"} n, output = 0, defaultdict(list) with open(data_file) as f: for key, dtype, value in ijson.parse(f): key = key.replace("item.", "") if key == "namespace" and len(output): output = {k: (v[0] if k != "contributors" else v) for k, v in output.items()} yield n, processing(output, self.config.name) output = defaultdict(list) n += 1 elif key in _TARGET: output[key.replace(".item", "")].append(value)