import csv import os import datasets _CITATION = """\ @Dataset{wisdomify:storyteller, title = {Korean proverb definitions and examples}, author={Jongyoon Kim, Yubin Kim, Yongtaek Im }, year={2021} } """ _DESCRIPTION = """\ This dataset is designed to provide forward and reverse dictionary of Korean proverbs. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # If it is dropbox link, you must set 1 for query parameter "dl". _URLs = { 'definition': "https://www.dropbox.com/s/4uh564afaimtob3/definition.zip?dl=1", 'example': "https://www.dropbox.com/s/adlt9n6x5gjs0a6/example.zip?dl=1", } class Story(datasets.GeneratorBasedBuilder): # version must be "x.y.z' form VERSION = datasets.Version("0.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="definition", version=VERSION, description="definition"), datasets.BuilderConfig(name="example", version=VERSION, description="example"), ] # This config is applied when user load dataset without "name". DEFAULT_CONFIG_NAME = "definition" def _info(self): # This method specifies the datasets.DatasetInfo object which contains information # and typings for the dataset if self.config.name == "definition": # These are the features of your dataset like images, labels ... features = datasets.Features( { "wisdom": datasets.Value("string"), "def": datasets.Value("string"), } ) elif self.config.name == "example": features = datasets.Features( { "wisdom": datasets.Value("string"), "eg": datasets.Value("string"), } ) else: raise NotImplementedError(f"Wrong name: {self.config.name}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # This method is used when user loads dataset. # dl_manager can be used to download and extract the dataset # and also can set split depending onf the configuration # Downloading data with _URLs downloaded_files = dl_manager.download_and_extract(_URLs[self.config.name]) dtp = 'def' if self.config.name == "definition" else 'eg' train_path = os.path.join(downloaded_files, f'train_wisdom2{dtp}.tsv') val_path = os.path.join(downloaded_files, f'val_wisdom2{dtp}.tsv') test_path = os.path.join(downloaded_files, f'test_wisdom2{dtp}.tsv') return [ # These gen_kwargs will be passed to _generate_examples datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path, "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path, "split": "validation"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": test_path, "split": "test"}, ), ] def _generate_examples(self, filepath, split): # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` """ Yields examples as (key, example) tuples. """ # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is here for legacy reason (tfds) and is not important in itself. with open(filepath, encoding="utf-8") as f: tsv_reader = csv.reader(f, delimiter="\t") for id_, row in enumerate(tsv_reader): if id_ == 0: continue # first row shows column info if self.config.name == "definition": yield id_, { "wisdom": row[0], "def": row[1], } elif self.config.name == "example": yield id_, { "wisdom": row[0], "eg": row[1], } else: raise NotImplementedError(f"Wrong name: {self.config.name}")