import kornia.augmentation as K import torch from torchgeo.datasets import EuroSAT import os from collections.abc import Callable, Sequence from torch import Tensor import numpy as np import rasterio from pyproj import Transformer from typing import TypeAlias, ClassVar import pathlib Path: TypeAlias = str | os.PathLike[str] class SenBenchEuroSATS2(EuroSAT): url = None base_dir = 'all_imgs' splits = ('train', 'val', 'test') split_filenames: ClassVar[dict[str, str]] = { 'train': 'eurosat-train.txt', 'val': 'eurosat-val.txt', 'test': 'eurosat-test.txt', } all_band_names = ( 'B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B10', 'B11', 'B12', 'B8A', ) rgb_bands = ('B04', 'B03', 'B02') BAND_SETS: ClassVar[dict[str, tuple[str, ...]]] = { 'all': all_band_names, 'rgb': rgb_bands, 'all-ssl4eo': ('B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12') } def __init__( self, root: Path = 'data', split: str = 'train', bands: Sequence[str] = BAND_SETS['all-ssl4eo'], transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, download: bool = False, ) -> None: self.root = root self.transforms = transforms self.download = download #self.checksum = checksum assert split in ['train', 'val', 'test'] self._validate_bands(bands) self.bands = bands self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names] self._verify() self.valid_fns = [] self.classes = [] with open(os.path.join(self.root, self.split_filenames[split])) as f: for fn in f: self.valid_fns.append(fn.strip().replace('.jpg', '.tif')) cls_name = fn.strip().split('_')[0] if cls_name not in self.classes: self.classes.append(cls_name) self.classes = sorted(self.classes) self.root = os.path.join(self.root, self.base_dir) #root_path = pathlib.Path(root,split) #self.classes = sorted([d.name for d in root_path.iterdir() if d.is_dir()]) self.class_to_idx = {cls_name: i for i, cls_name in enumerate(self.classes)} self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m def __len__(self): return len(self.valid_fns) def __getitem__(self, index): image, coord, label = self._load_image(index) meta_info = np.array([coord[0], coord[1], np.nan, self.patch_area]).astype(np.float32) sample = {'image': image, 'label': label, 'meta': torch.from_numpy(meta_info)} if self.transforms is not None: sample = self.transforms(sample) return sample def _load_image(self, index): fname = self.valid_fns[index] dirname = fname.split('_')[0] img_path = os.path.join(self.root, dirname, fname) target = self.class_to_idx[dirname] with rasterio.open(img_path) as src: image = src.read(self.band_indices).astype('float32') cx,cy = src.xy(src.height // 2, src.width // 2) if src.crs.to_string() != 'EPSG:4326': crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True) lon, lat = crs_transformer.transform(cx,cy) else: lon, lat = cx, cy return torch.from_numpy(image), (lon,lat), target class ClsDataAugmentation(torch.nn.Module): BAND_STATS = { 'mean': { 'B01': 1353.72696296, 'B02': 1117.20222222, 'B03': 1041.8842963, 'B04': 946.554, 'B05': 1199.18896296, 'B06': 2003.00696296, 'B07': 2374.00874074, 'B08': 2301.22014815, 'B8A': 2599.78311111, 'B09': 732.18207407, 'B10': 12.09952894, 'B11': 1820.69659259, 'B12': 1118.20259259, #'VV': -12.54847273, #'VH': -20.19237134 }, 'std': { 'B01': 897.27143653, 'B02': 736.01759721, 'B03': 684.77615743, 'B04': 620.02902871, 'B05': 791.86263829, 'B06': 1341.28018273, 'B07': 1595.39989386, 'B08': 1545.52915718, 'B8A': 1750.12066835, 'B09': 475.11595216, 'B10': 98.26600935, 'B11': 1216.48651476, 'B12': 736.6981037, #'VV': 5.25697717, #'VH': 5.91150917 } } def __init__(self, split, size, bands): super().__init__() mean = [] std = [] for band in bands: mean.append(self.BAND_STATS['mean'][band]) std.append(self.BAND_STATS['std'][band]) mean = torch.Tensor(mean) std = torch.Tensor(std) if split == "train": self.transform = torch.nn.Sequential( K.Normalize(mean=mean, std=std), K.Resize(size=size, align_corners=True), K.RandomHorizontalFlip(p=0.5), K.RandomVerticalFlip(p=0.5), ) else: self.transform = torch.nn.Sequential( K.Normalize(mean=mean, std=std), K.Resize(size=size, align_corners=True), ) @torch.no_grad() def forward(self, batch: dict[str,]): """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple""" x_out = self.transform(batch["image"]).squeeze(0) return x_out, batch["label"], batch["meta"] class SenBenchEuroSATS2Dataset: def __init__(self, config): self.dataset_config = config self.img_size = (config.image_resolution, config.image_resolution) self.root_dir = config.data_path self.bands = config.band_names def create_dataset(self): train_transform = ClsDataAugmentation(split="train", size=self.img_size, bands=self.bands) eval_transform = ClsDataAugmentation(split="test", size=self.img_size, bands=self.bands) dataset_train = SenBenchEuroSATS2( root=self.root_dir, split="train", bands=self.bands, transforms=train_transform ) dataset_val = SenBenchEuroSATS2( root=self.root_dir, split="val", bands=self.bands, transforms=eval_transform ) dataset_test = SenBenchEuroSATS2( root=self.root_dir, split="test", bands=self.bands, transforms=eval_transform ) return dataset_train, dataset_val, dataset_test