from torch.utils.data import DataLoader, Dataset import cv2 import os import rasterio import torch import numpy as np from pyproj import Transformer from datetime import date S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539, 0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267, 0.00493004,0.00549962,0.00502847,0.00326378,0.00324118] LC100_CLSID = { 0: 0, # unknown 20: 1, 30: 2, 40: 3, 50: 4, 60: 5, 70: 6, 80: 7, 90: 8, 100: 9, 111: 10, 112: 11, 113: 12, 114: 13, 115: 14, 116: 15, 121: 16, 122: 17, 123: 18, 124: 19, 125: 20, 126: 21, 200: 22, # ocean } class S3OLCI_LC100ClsDataset(Dataset): ''' 6908/1727 train/test images 96x96x21 23 classes multilabel LULC nodata: -inf time series: 1-4 time stamps / location ''' def __init__(self, root_dir, mode='static', split='train', meta=False): self.root_dir = root_dir self.mode = mode self.meta = meta self.img_dir = os.path.join(root_dir, split, 's3_olci') self.lc100_cls = os.path.join(root_dir, split, 'lc100_multilabel.csv') self.fnames = [] self.labels = [] with open(self.lc100_cls, 'r') as f: lines = f.readlines() for line in lines: self.fnames.append(line.strip().split(',')[0]) self.labels.append(list(map(int, line.strip().split(',')[1:]))) if self.mode == 'static': self.static_csv = os.path.join(root_dir, split, 'static_fnames.csv') with open(self.static_csv, 'r') as f: lines = f.readlines() self.static_img = {} for line in lines: dirname = line.strip().split(',')[0] img_fname = line.strip().split(',')[1] self.static_img[dirname] = img_fname if self.meta: self.reference_date = date(1970, 1, 1) def __len__(self): return len(self.fnames) def __getitem__(self, idx): fname = self.fnames[idx] s3_path = os.path.join(self.img_dir, fname) if self.mode == 'static': img_fname = self.static_img[fname] s3_paths = [os.path.join(s3_path, img_fname)] else: img_fnames = os.listdir(s3_path) s3_paths = [] for img_fname in img_fnames: s3_paths.append(os.path.join(s3_path, img_fname)) imgs = [] img_paths = [] meta_infos = [] for img_path in s3_paths: with rasterio.open(img_path) as src: img = src.read() chs = [] for b in range(21): ch = cv2.resize(img[b], (96,96), interpolation=cv2.INTER_CUBIC) chs.append(ch) img = np.stack(chs) img[np.isnan(img)] = 0 for b in range(21): img[b] = img[b]*S3_OLCI_SCALE[b] img = torch.from_numpy(img).float() if self.meta: # get lon, lat cx,cy = src.xy(src.height // 2, src.width // 2) # convert to lon, lat #crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326') #lon, lat = crs_transformer.transform(cx,cy) lon, lat = cx, cy # get time img_fname = os.path.basename(img_path) date_str = img_fname.split('_')[1][:8] date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8])) delta = (date_obj - self.reference_date).days meta_info = np.array([lon, lat, delta, 0]).astype(np.float32) else: meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32) imgs.append(img) img_paths.append(img_path) meta_infos.append(meta_info) if self.mode == 'series': # pad to 4 images if less than 4 while len(imgs) < 4: imgs.append(img) img_paths.append(img_path) meta_infos.append(meta_info) label = self.labels[idx] labels = torch.zeros(23) # turn into one-hot for l in label: cls_id = LC100_CLSID[l] labels[cls_id] = 1 if self.mode == 'static': return imgs[0], meta_infos[0], labels elif self.mode == 'series': return imgs[0], imgs[1], imgs[2], imgs[3], meta_infos[0], meta_infos[1], meta_infos[2], meta_infos[3], labels if __name__ == '__main__': dataset = S3OLCI_LC100ClsDataset(root_dir='../data/downstream/cgls_lc100', mode='static', split=None, meta=True) dataloader = DataLoader(dataset, batch_size=64, shuffle=False, num_workers=4) for i, data in enumerate(dataloader): #print(data[0].shape) #print(data[1].shape) #print(data[1]) #print(data[2]) #print(data[0].max()) #break pass