language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def main():
"""
Example graph for stochastic gradient ascent
"""
root_path = os.path.abspath(os.curdir)
file_path = "data/test_set.txt"
data_matrix, label_matrix = utils.load_dataset(file_path)
weights = regression.modified_stochastic_gradient_ascent(array(data_matrix), label_matrix)
graphs.plot_best_fit(weights, data_matrix, label_matrix) | def main():
"""
Example graph for stochastic gradient ascent
"""
root_path = os.path.abspath(os.curdir)
file_path = "data/test_set.txt"
data_matrix, label_matrix = utils.load_dataset(file_path)
weights = regression.modified_stochastic_gradient_ascent(array(data_matrix), label_matrix)
graphs.plot_best_fit(weights, data_matrix, label_matrix) |
Python | def select_j_rand(i, m):
"""
takes 2 values: the index of our first alpha,
and the total number of alphas.
A value is randomly chosen,
as long as it isn't i
"""
j = i
while(j == i):
j = int(random.uniform(0, m))
return j | def select_j_rand(i, m):
"""
takes 2 values: the index of our first alpha,
and the total number of alphas.
A value is randomly chosen,
as long as it isn't i
"""
j = i
while(j == i):
j = int(random.uniform(0, m))
return j |
Python | def clip_alpha(aj, H, L):
"""
cLips alpha vaLues tHat are greater
tHan H or Less tHan L
"""
if aj > H:
aj = H
if L > aj:
aj = L
return aj | def clip_alpha(aj, H, L):
"""
cLips alpha vaLues tHat are greater
tHan H or Less tHan L
"""
if aj > H:
aj = H
if L > aj:
aj = L
return aj |
Python | def calculate_ek(os, k):
"""
calculates an E value for
a given alpha
"""
f_x_k = float(multiply(os.alphas, os.label_matrix).T * os.K[:, k] + os.b)
ek = f_x_k - float(os.label_matrix[k])
return ek | def calculate_ek(os, k):
"""
calculates an E value for
a given alpha
"""
f_x_k = float(multiply(os.alphas, os.label_matrix).T * os.K[:, k] + os.b)
ek = f_x_k - float(os.label_matrix[k])
return ek |
Python | def select_j(i, os, ei):
"""
takes the error value associated
with the first choice alpha and the index i;
find the nonzero members and choose the one
that gives you maximum change
"""
max_k = -1
max_delta_e = 0
ej = 0
os.e_cache[i] = [1, ei]
valid_e_cache_list = nonzero(os.e_cache[:, 0].A)[0]
if (len(valid_e_cache_list)) > 1:
for k in valid_e_cache_list:
if k == i:
continue
ek = calculate_ek(os, k)
delta_e = abs(ei - ek)
# choose j for maximum step size
if (delta_e > max_delta_e):
max_k = k
max_delta_e = delta_e
ej = ek
return max_k, ej
else:
j = select_j_rand(i, os.m)
ej = calculate_ek(os, j)
return j, ej | def select_j(i, os, ei):
"""
takes the error value associated
with the first choice alpha and the index i;
find the nonzero members and choose the one
that gives you maximum change
"""
max_k = -1
max_delta_e = 0
ej = 0
os.e_cache[i] = [1, ei]
valid_e_cache_list = nonzero(os.e_cache[:, 0].A)[0]
if (len(valid_e_cache_list)) > 1:
for k in valid_e_cache_list:
if k == i:
continue
ek = calculate_ek(os, k)
delta_e = abs(ei - ek)
# choose j for maximum step size
if (delta_e > max_delta_e):
max_k = k
max_delta_e = delta_e
ej = ek
return max_k, ej
else:
j = select_j_rand(i, os.m)
ej = calculate_ek(os, j)
return j, ej |
Python | def update_ek(os, k):
"""
calculate the error
and put it in the cache
"""
ek = calculate_ek(os, k)
os.e_cache[k] = [1, ek] | def update_ek(os, k):
"""
calculate the error
and put it in the cache
"""
ek = calculate_ek(os, k)
os.e_cache[k] = [1, ek] |
Python | def calculate_ws(alphas, data_array, class_labels):
"""
get the hpyerplane from the alphas
by computing the w value.
note that if the alphas are zero, they don't
"matter"
"""
X = mat(data_array)
label_matrix = mat(class_labels).transpose()
m, n = shape(X)
w = zeros((n, 1))
for i in range(m):
w += multiply(alphas[i] * label_matrix[i], X[i, :].T)
return w | def calculate_ws(alphas, data_array, class_labels):
"""
get the hpyerplane from the alphas
by computing the w value.
note that if the alphas are zero, they don't
"matter"
"""
X = mat(data_array)
label_matrix = mat(class_labels).transpose()
m, n = shape(X)
w = zeros((n, 1))
for i in range(m):
w += multiply(alphas[i] * label_matrix[i], X[i, :].T)
return w |
Python | def stump_classify(data_matrix, dimension, threshold, threshold_ineq):
"""
performs threshold comparisons
to classify data.
"""
classification = np.ones((np.shape(data_matrix)[0], 1))
if threshold_ineq == 'lt':
classification[data_matrix[:, dimension] <= threshold] = -1.0
else:
classification[data_matrix[:, dimension] > threshold] = -1.0
return classification | def stump_classify(data_matrix, dimension, threshold, threshold_ineq):
"""
performs threshold comparisons
to classify data.
"""
classification = np.ones((np.shape(data_matrix)[0], 1))
if threshold_ineq == 'lt':
classification[data_matrix[:, dimension] <= threshold] = -1.0
else:
classification[data_matrix[:, dimension] > threshold] = -1.0
return classification |
Python | def build_stump(data_array, class_labels, D):
"""
Iterate over all the possible inputs to stump_classify
and find the best decision stump for the dataset.
'Best' is decided by the weight vector D.
"""
data_matrix = np.mat(data_array)
label_matrix = np.mat(class_labels).T
m, n = np.shape(data_matrix)
number_of_steps = 10.0
best_stump = {}
best_class_estimate = np.mat(np.zeros((m, 1)))
min_error = np.inf
logging.info("n is {n}".format(n=n))
for i in range(n):
range_min = data_matrix[:, i].min()
range_max = data_matrix[:, i].max()
# how large should your step size be?
step_size = (range_max - range_min) / number_of_steps
for j in range(-1, int(number_of_steps) + 1):
for inequal in ['lt', 'gt']:
threshold = (range_min + float(j) * step_size)
predicted_values = stump_classify(data_matrix,
i,
threshold,
inequal)
_errors = np.mat(np.ones((m, 1)))
# _errors is 1 for any value in predicted_values
# that isn't equal to the label
_errors[predicted_values == label_matrix] = 0
weighted_error = D.T * _errors
message = ', '.join(['split: dim {}',
'thresh {:03.2f}',
'inequal: {}',
'weighted_error: {}'])
logging.info(message.format(i,
threshold,
inequal,
weighted_error))
if weighted_error < min_error:
min_error = weighted_error
best_class_estimate = predicted_values.copy()
best_stump['dim'] = i
best_stump['threshold'] = threshold
best_stump['inequal'] = inequal
return best_stump, min_error, best_class_estimate | def build_stump(data_array, class_labels, D):
"""
Iterate over all the possible inputs to stump_classify
and find the best decision stump for the dataset.
'Best' is decided by the weight vector D.
"""
data_matrix = np.mat(data_array)
label_matrix = np.mat(class_labels).T
m, n = np.shape(data_matrix)
number_of_steps = 10.0
best_stump = {}
best_class_estimate = np.mat(np.zeros((m, 1)))
min_error = np.inf
logging.info("n is {n}".format(n=n))
for i in range(n):
range_min = data_matrix[:, i].min()
range_max = data_matrix[:, i].max()
# how large should your step size be?
step_size = (range_max - range_min) / number_of_steps
for j in range(-1, int(number_of_steps) + 1):
for inequal in ['lt', 'gt']:
threshold = (range_min + float(j) * step_size)
predicted_values = stump_classify(data_matrix,
i,
threshold,
inequal)
_errors = np.mat(np.ones((m, 1)))
# _errors is 1 for any value in predicted_values
# that isn't equal to the label
_errors[predicted_values == label_matrix] = 0
weighted_error = D.T * _errors
message = ', '.join(['split: dim {}',
'thresh {:03.2f}',
'inequal: {}',
'weighted_error: {}'])
logging.info(message.format(i,
threshold,
inequal,
weighted_error))
if weighted_error < min_error:
min_error = weighted_error
best_class_estimate = predicted_values.copy()
best_stump['dim'] = i
best_stump['threshold'] = threshold
best_stump['inequal'] = inequal
return best_stump, min_error, best_class_estimate |
Python | def classify(data_to_classify, classifiers):
"""classifies with a train of weak classifiers"""
data_matrix = np.mat(data_to_classify)
m = np.shape(data_matrix)[0]
# initialize to zeros
aggregated_class_estimate = np.mat(np.zeros((m, 1)))
for i in range(len(classifiers)):
class_estimate = stump_classify(data_matrix, classifiers[i]['dim'],
classifiers[i]['threshold'],
classifiers[i]['inequal'])
aggregated_class_estimate += classifiers[i]['alpha'] * class_estimate
return np.sign(aggregated_class_estimate) | def classify(data_to_classify, classifiers):
"""classifies with a train of weak classifiers"""
data_matrix = np.mat(data_to_classify)
m = np.shape(data_matrix)[0]
# initialize to zeros
aggregated_class_estimate = np.mat(np.zeros((m, 1)))
for i in range(len(classifiers)):
class_estimate = stump_classify(data_matrix, classifiers[i]['dim'],
classifiers[i]['threshold'],
classifiers[i]['inequal'])
aggregated_class_estimate += classifiers[i]['alpha'] * class_estimate
return np.sign(aggregated_class_estimate) |
Python | def plot_roc(prediction_strengths, class_labels):
"""
ROC curve: receiver operating characteristic
the X-axis is the number of false positives,
the Y-axis is the number of true positives
AUC: area under the curve
"""
import matplotlib.pyplot as plt
cur = (1.0, 1.0)
y_sum = 0.0
number_positive_classes = sum(np.array(class_labels) == 1.0)
y_step = 1 / float(number_positive_classes)
x_step = 1 / float(len(class_labels) - number_positive_classes)
sorted_indices = prediction_strengths.argsort()
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
for index in sorted_indices.tolist()[0]:
if class_labels[index] == 1.0:
del_x = 0
del_y = y_step
else:
del_x = x_step
del_y = 0
y_sum += cur[1]
ax.plot([cur[0], cur[0] - del_x], [cur[1], cur[1] - del_y], c='b')
cur = (cur[0] - del_x, cur[1] - del_y)
ax.plot([0, 1], [0, 1], 'b--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC curve for AdaBoost Horse Colic Detection System')
ax.axis([0, 1, 0, 1])
plt.show()
logging.info("the area under the curve (AUC) is {}".format(y_sum * x_step)) | def plot_roc(prediction_strengths, class_labels):
"""
ROC curve: receiver operating characteristic
the X-axis is the number of false positives,
the Y-axis is the number of true positives
AUC: area under the curve
"""
import matplotlib.pyplot as plt
cur = (1.0, 1.0)
y_sum = 0.0
number_positive_classes = sum(np.array(class_labels) == 1.0)
y_step = 1 / float(number_positive_classes)
x_step = 1 / float(len(class_labels) - number_positive_classes)
sorted_indices = prediction_strengths.argsort()
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
for index in sorted_indices.tolist()[0]:
if class_labels[index] == 1.0:
del_x = 0
del_y = y_step
else:
del_x = x_step
del_y = 0
y_sum += cur[1]
ax.plot([cur[0], cur[0] - del_x], [cur[1], cur[1] - del_y], c='b')
cur = (cur[0] - del_x, cur[1] - del_y)
ax.plot([0, 1], [0, 1], 'b--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC curve for AdaBoost Horse Colic Detection System')
ax.axis([0, 1, 0, 1])
plt.show()
logging.info("the area under the curve (AUC) is {}".format(y_sum * x_step)) |
Python | def binary_split_dataset(data_set, feature, value):
"""
use array filtering to partition data on the given
feature and value
"""
logging.info("dataset looks like {d}".format(d=data_set))
logging.info("feature is {f} and value is {v}".format(f=feature,
v=value))
matrix_0 = data_set[np.nonzero(data_set[:, feature] > value)[0], :][0]
matrix_1 = data_set[np.nonzero(data_set[:, feature] <= value)[0], :][0]
return matrix_0, matrix_1 | def binary_split_dataset(data_set, feature, value):
"""
use array filtering to partition data on the given
feature and value
"""
logging.info("dataset looks like {d}".format(d=data_set))
logging.info("feature is {f} and value is {v}".format(f=feature,
v=value))
matrix_0 = data_set[np.nonzero(data_set[:, feature] > value)[0], :][0]
matrix_1 = data_set[np.nonzero(data_set[:, feature] <= value)[0], :][0]
return matrix_0, matrix_1 |
Python | def create_tree(data_set,
leaf_type=generate_leaf_model,
error_type=get_squared_error,
ops=(1, 4)):
"""
First attempts to split the dataset into 2 parts,
as determined by choose_best_split. If choose_best_split
hits a stopping condition, it will return None and the value
for a model type. In the case of regression trees, the model is a
constant value; in the case of model trees, this is a linear equation.
If the stopping condition isn't hit, you create a new dict
and split the dataset into 2 portions, calling create_tree
recursively on those portions.
"""
feature, value = choose_best_split(data_set,
leaf_type,
error_type,
ops)
if feature is None:
return value
return_tree = {}
return_tree['spInd'] = feature
return_tree['spVal'] = value
left_set, right_set = binary_split_dataset(data_set, feature, value)
return_tree['left'] = create_tree(left_set, leaf_type, error_type, ops)
return_tree['right'] = create_tree(right_set, leaf_type, error_type, ops)
return return_tree | def create_tree(data_set,
leaf_type=generate_leaf_model,
error_type=get_squared_error,
ops=(1, 4)):
"""
First attempts to split the dataset into 2 parts,
as determined by choose_best_split. If choose_best_split
hits a stopping condition, it will return None and the value
for a model type. In the case of regression trees, the model is a
constant value; in the case of model trees, this is a linear equation.
If the stopping condition isn't hit, you create a new dict
and split the dataset into 2 portions, calling create_tree
recursively on those portions.
"""
feature, value = choose_best_split(data_set,
leaf_type,
error_type,
ops)
if feature is None:
return value
return_tree = {}
return_tree['spInd'] = feature
return_tree['spVal'] = value
left_set, right_set = binary_split_dataset(data_set, feature, value)
return_tree['left'] = create_tree(left_set, leaf_type, error_type, ops)
return_tree['right'] = create_tree(right_set, leaf_type, error_type, ops)
return return_tree |
Python | def prune(tree, test_data):
"""
Collapse the tree if there is no test data
"""
if np.shape(test_data)[0] == 0:
return get_mean(tree)
if is_tree(tree['right']) or is_tree(tree['left']):
l_set, r_set = binary_split_dataset(test_data,
tree['spInd'],
tree['spVal'])
if is_tree(tree['left']):
tree['left'] = prune(tree['left'], l_set)
if is_tree(tree['right']):
tree['right'] = prune(tree['right'], r_set)
# neither one are trees; now you can merge
if not is_tree(tree['left']) and not is_tree(tree['right']):
l_set, r_set = binary_split_dataset(test_data,
tree['spInd'],
tree['spVal'])
left_merge_err = sum(np.power(l_set[:, -1] - tree['left'], 2))
right_merge_err = sum(np.power(r_set[:, -1] - tree['right'], 2))
error_no_merge = left_merge_err + right_merge_err
tree_mean = (tree['left'] + tree['right']) / 2.0
error_merge = sum(np.power(test_data[:, -1] - tree_mean, 2))
if error_merge < error_no_merge:
message = "merging and returning tree_mean: {0}"
logging.info(message.format(tree_mean))
return tree_mean
else:
return tree
else:
return tree | def prune(tree, test_data):
"""
Collapse the tree if there is no test data
"""
if np.shape(test_data)[0] == 0:
return get_mean(tree)
if is_tree(tree['right']) or is_tree(tree['left']):
l_set, r_set = binary_split_dataset(test_data,
tree['spInd'],
tree['spVal'])
if is_tree(tree['left']):
tree['left'] = prune(tree['left'], l_set)
if is_tree(tree['right']):
tree['right'] = prune(tree['right'], r_set)
# neither one are trees; now you can merge
if not is_tree(tree['left']) and not is_tree(tree['right']):
l_set, r_set = binary_split_dataset(test_data,
tree['spInd'],
tree['spVal'])
left_merge_err = sum(np.power(l_set[:, -1] - tree['left'], 2))
right_merge_err = sum(np.power(r_set[:, -1] - tree['right'], 2))
error_no_merge = left_merge_err + right_merge_err
tree_mean = (tree['left'] + tree['right']) / 2.0
error_merge = sum(np.power(test_data[:, -1] - tree_mean, 2))
if error_merge < error_no_merge:
message = "merging and returning tree_mean: {0}"
logging.info(message.format(tree_mean))
return tree_mean
else:
return tree
else:
return tree |
Python | def tree_forecast(tree, input_data, model_evaluator=tree_evaluation):
"""
Gives one forecast for one data point, for a given tree.
"""
if not is_tree(tree):
return model_evaluator(tree, input_data)
if input_data[tree['spInd']] > tree['spVal']:
if is_tree(tree['left']):
return tree_forecast(tree['left'], input_data, model_evaluator)
else:
return model_evaluator(tree['left'], input_data)
else:
if is_tree(tree['right']):
return tree_forecast(tree['right'], input_data, model_evaluator)
else:
return model_evaluator(tree['right'], input_data) | def tree_forecast(tree, input_data, model_evaluator=tree_evaluation):
"""
Gives one forecast for one data point, for a given tree.
"""
if not is_tree(tree):
return model_evaluator(tree, input_data)
if input_data[tree['spInd']] > tree['spVal']:
if is_tree(tree['left']):
return tree_forecast(tree['left'], input_data, model_evaluator)
else:
return model_evaluator(tree['left'], input_data)
else:
if is_tree(tree['right']):
return tree_forecast(tree['right'], input_data, model_evaluator)
else:
return model_evaluator(tree['right'], input_data) |
Python | def forecasting_models_example():
"""
Build 3 models and evaluate the performance of model trees,
regression trees and standard linear regression.
"""
train_file = 'data/bikeSpeedVsIq_train.txt'
test_file = 'data/bikeSpeedVsIq_test.txt'
training_matrix = np.mat(utils.
load_tsv_into_array(train_file))
test_matrix = np.mat(utils.
load_tsv_into_array(test_file))
# training tree
tree = regression_trees.create_tree(training_matrix, ops=(1, 20))
y_hat = regression_trees.create_forecast(tree, test_matrix[:, 0])
accuracy = np.corrcoef(y_hat, test_matrix[:, 1], rowvar=0)[0, 1]
logging.info("training accuracy = {0}".format(accuracy))
# model tree
tree = regression_trees.create_tree(training_matrix,
regression_trees.model_leaf,
regression_trees.model_error,
(1, 20))
y_hat = regression_trees.create_forecast(tree,
test_matrix[:, 0],
regression_trees.
model_tree_evaluation)
accuracy = np.corrcoef(y_hat, test_matrix[:, 1], rowvar=0)[0, 1]
logging.info("model tree accuracy = {0}".format(accuracy))
weights, x, y = regression_trees.linearly_solve(training_matrix)
for i in range(np.shape(test_matrix)[0]):
y_hat[i] = test_matrix[i, 0] * weights[1, 0] + weights[0, 0]
accuracy = np.corrcoef(y_hat, test_matrix[:, 1], rowvar=0)[0, 1]
logging.info("regression accuracy = {0}".format(accuracy)) | def forecasting_models_example():
"""
Build 3 models and evaluate the performance of model trees,
regression trees and standard linear regression.
"""
train_file = 'data/bikeSpeedVsIq_train.txt'
test_file = 'data/bikeSpeedVsIq_test.txt'
training_matrix = np.mat(utils.
load_tsv_into_array(train_file))
test_matrix = np.mat(utils.
load_tsv_into_array(test_file))
# training tree
tree = regression_trees.create_tree(training_matrix, ops=(1, 20))
y_hat = regression_trees.create_forecast(tree, test_matrix[:, 0])
accuracy = np.corrcoef(y_hat, test_matrix[:, 1], rowvar=0)[0, 1]
logging.info("training accuracy = {0}".format(accuracy))
# model tree
tree = regression_trees.create_tree(training_matrix,
regression_trees.model_leaf,
regression_trees.model_error,
(1, 20))
y_hat = regression_trees.create_forecast(tree,
test_matrix[:, 0],
regression_trees.
model_tree_evaluation)
accuracy = np.corrcoef(y_hat, test_matrix[:, 1], rowvar=0)[0, 1]
logging.info("model tree accuracy = {0}".format(accuracy))
weights, x, y = regression_trees.linearly_solve(training_matrix)
for i in range(np.shape(test_matrix)[0]):
y_hat[i] = test_matrix[i, 0] * weights[1, 0] + weights[0, 0]
accuracy = np.corrcoef(y_hat, test_matrix[:, 1], rowvar=0)[0, 1]
logging.info("regression accuracy = {0}".format(accuracy)) |
Python | def generate_full_tree(pth):
''' brief:
create the full evolution relationship.
equivalent to using top-<max species num> in visualizing evolution
'''
from html_visual import vis_tree
data_path = os.path.join(pth, 'species_data')
rank_info_list = []
for fn in glob.glob(data_path + '/*'):
if fn.endswith('_rank_info.npy') == False:
continue
rank_info_list.append(fn)
rank_info_list = sorted(rank_info_list,
key=lambda x: int(x.split('/')[-1].split('_')[0]))
last_gen = np.load(rank_info_list[-1]).item()
max_species_num = len(last_gen['PrtID'])
all_species_evolution = vis_tree.evolution_graph(data_path + '/', k=max_species_num)
return all_species_evolution | def generate_full_tree(pth):
''' brief:
create the full evolution relationship.
equivalent to using top-<max species num> in visualizing evolution
'''
from html_visual import vis_tree
data_path = os.path.join(pth, 'species_data')
rank_info_list = []
for fn in glob.glob(data_path + '/*'):
if fn.endswith('_rank_info.npy') == False:
continue
rank_info_list.append(fn)
rank_info_list = sorted(rank_info_list,
key=lambda x: int(x.split('/')[-1].split('_')[0]))
last_gen = np.load(rank_info_list[-1]).item()
max_species_num = len(last_gen['PrtID'])
all_species_evolution = vis_tree.evolution_graph(data_path + '/', k=max_species_num)
return all_species_evolution |
Python | def parent_child_performance(pth):
''' plotting parent-child and their performance difference
'''
data_path = os.path.join(pth, 'species_data')
rank_info_list = []
for fn in glob.glob(data_path + '/*'):
if fn.endswith('_rank_info.npy') == False:
continue
rank_info_list.append(fn)
rank_info_list = sorted(rank_info_list,
key=lambda x: int(x.split('/')[-1].split('_')[0]))
pc_performance_list = []
for i, fn in enumerate(rank_info_list):
if i == 0: continue
curr_data = np.load(fn).item()
prev_data = np.load(rank_info_list[i-1]).item()
# getting all the parent's id
p_id_list = curr_data['PrtID']
prev_gen_spc = prev_data['SpcID']
species_needed = [(curr_data['SpcID'][j], x) \
for j, x in enumerate(p_id_list) \
if x in prev_gen_spc
]
# create the reward
p_r, c_r = [], []
for pc_pair in species_needed:
child, parent = pc_pair
p_r.append(prev_data['AvgRwd'][prev_data['SpcID'].index(parent)])
c_r.append(curr_data['AvgRwd'][curr_data['SpcID'].index(child)])
pc_performance_list.append( (sum(p_r)/len(p_r), sum(c_r)/len(c_r)) )
# use visdom to plot the line
win1 = None
win2 = None
for i, val in enumerate(pc_performance_list):
v1, v2 = val
win1 = visdom_util.viz_line(i, [v1, v2], viz_win=win1,
title='Avg Parent-child performance comparison',
xlabel='Generation', ylabel='Average Reward',
legend=['Parent', 'Child']
)
win2 = visdom_util.viz_line(i, [ (v2 - v1) / v1 ], viz_win=win2,
title='Drop comparing to parent in percentile',
xlabel='Generation', ylabel='Drop in percentile',
legend=['Drop'])
return None | def parent_child_performance(pth):
''' plotting parent-child and their performance difference
'''
data_path = os.path.join(pth, 'species_data')
rank_info_list = []
for fn in glob.glob(data_path + '/*'):
if fn.endswith('_rank_info.npy') == False:
continue
rank_info_list.append(fn)
rank_info_list = sorted(rank_info_list,
key=lambda x: int(x.split('/')[-1].split('_')[0]))
pc_performance_list = []
for i, fn in enumerate(rank_info_list):
if i == 0: continue
curr_data = np.load(fn).item()
prev_data = np.load(rank_info_list[i-1]).item()
# getting all the parent's id
p_id_list = curr_data['PrtID']
prev_gen_spc = prev_data['SpcID']
species_needed = [(curr_data['SpcID'][j], x) \
for j, x in enumerate(p_id_list) \
if x in prev_gen_spc
]
# create the reward
p_r, c_r = [], []
for pc_pair in species_needed:
child, parent = pc_pair
p_r.append(prev_data['AvgRwd'][prev_data['SpcID'].index(parent)])
c_r.append(curr_data['AvgRwd'][curr_data['SpcID'].index(child)])
pc_performance_list.append( (sum(p_r)/len(p_r), sum(c_r)/len(c_r)) )
# use visdom to plot the line
win1 = None
win2 = None
for i, val in enumerate(pc_performance_list):
v1, v2 = val
win1 = visdom_util.viz_line(i, [v1, v2], viz_win=win1,
title='Avg Parent-child performance comparison',
xlabel='Generation', ylabel='Average Reward',
legend=['Parent', 'Child']
)
win2 = visdom_util.viz_line(i, [ (v2 - v1) / v1 ], viz_win=win2,
title='Drop comparing to parent in percentile',
xlabel='Generation', ylabel='Drop in percentile',
legend=['Drop'])
return None |
Python | def filter_spc(evolution_graph, spc_id):
''' get all the related nodes wrt spc_id
includes: 1. direct parent
2. all their children
'''
return evolution_graph | def filter_spc(evolution_graph, spc_id):
''' get all the related nodes wrt spc_id
includes: 1. direct parent
2. all their children
'''
return evolution_graph |
Python | def init_path():
''' function to be called in the beginning of the file
'''
_this_dir = osp.dirname(__file__)
_base_dir = osp.join(_this_dir, '..')
add_path(_base_dir)
return None | def init_path():
''' function to be called in the beginning of the file
'''
_this_dir = osp.dirname(__file__)
_base_dir = osp.join(_this_dir, '..')
add_path(_base_dir)
return None |
Python | def make_symmetric(self, task='fish', discrete=True):
''' make the symmetric node w.r.t the self node
symmetric node and return the new node
'''
new_attr = model_gen.gen_test_node_attr(
task=task,
node_num=2,
discrete_rv=discrete
)[-1]
same_attr = ['a_size', 'b_size', 'c_size', 'geom_type',
'joint_range']
for item in same_attr:
new_attr[item] = self.attr[item]
# set certain attributes
new_attr['u'] = np.pi - self.attr['u']
while new_attr['u'] < 0: new_attr['u'] += 2 * np.pi
new_attr['v'] = self.attr['v']
new_attr['axis_x'] = -self.attr['axis_x']
new_attr['axis_y'] = self.attr['axis_y']
# create the new node
new_node = Node(-1, new_attr)
return new_node | def make_symmetric(self, task='fish', discrete=True):
''' make the symmetric node w.r.t the self node
symmetric node and return the new node
'''
new_attr = model_gen.gen_test_node_attr(
task=task,
node_num=2,
discrete_rv=discrete
)[-1]
same_attr = ['a_size', 'b_size', 'c_size', 'geom_type',
'joint_range']
for item in same_attr:
new_attr[item] = self.attr[item]
# set certain attributes
new_attr['u'] = np.pi - self.attr['u']
while new_attr['u'] < 0: new_attr['u'] += 2 * np.pi
new_attr['v'] = self.attr['v']
new_attr['axis_x'] = -self.attr['axis_x']
new_attr['axis_y'] = self.attr['axis_y']
# create the new node
new_node = Node(-1, new_attr)
return new_node |
Python | def node_count(node, counter_start=0):
''' count the number of nodes in a tree
'''
total_num = counter_start
parent_list = [node]
while len(parent_list) != 0:
node = parent_list.pop(0)
child_list = node.get_child_list()
for child in child_list:
parent_list.append(child)
total_num = node.set_id(total_num)
return total_num | def node_count(node, counter_start=0):
''' count the number of nodes in a tree
'''
total_num = counter_start
parent_list = [node]
while len(parent_list) != 0:
node = parent_list.pop(0)
child_list = node.get_child_list()
for child in child_list:
parent_list.append(child)
total_num = node.set_id(total_num)
return total_num |
Python | def sample_leaf(self, p=0.5):
''' traverse the tree and flip coins on the leaf
returns a list of leaf nodes that are sampled
'''
def find_leaf(node, total_res):
'''
'''
child_list = node.get_child_list()
if len(child_list) == 0:
total_res.append(node)
return total_res
else:
for child in child_list:
total_res = find_leaf(child, total_res)
return total_res
all_leaf = find_leaf(self.root, [])
sampled_leaf = []
for node in all_leaf:
if np.random.binomial(1, p) == 1:
sampled_leaf.append(node)
return sampled_leaf | def sample_leaf(self, p=0.5):
''' traverse the tree and flip coins on the leaf
returns a list of leaf nodes that are sampled
'''
def find_leaf(node, total_res):
'''
'''
child_list = node.get_child_list()
if len(child_list) == 0:
total_res.append(node)
return total_res
else:
for child in child_list:
total_res = find_leaf(child, total_res)
return total_res
all_leaf = find_leaf(self.root, [])
sampled_leaf = []
for node in all_leaf:
if np.random.binomial(1, p) == 1:
sampled_leaf.append(node)
return sampled_leaf |
Python | def add_sub_tree(self, parent, child):
''' add the child (a node containing subtree)
to the parent's child_list
return: list of id values that is assigned to child
'''
# traverse child's subtree and update the id
prev_node_num = self.total_num
self.total_num = node_count(child, self.total_num)
parent.add_child(child)
return list(range(prev_node_num, self.total_num)) | def add_sub_tree(self, parent, child):
''' add the child (a node containing subtree)
to the parent's child_list
return: list of id values that is assigned to child
'''
# traverse child's subtree and update the id
prev_node_num = self.total_num
self.total_num = node_count(child, self.total_num)
parent.add_child(child)
return list(range(prev_node_num, self.total_num)) |
Python | def generate_one_node(self, only_one=False):
''' return a list of new nodes being generated
'''
# different policy for adding new hierarchical structure
if self.allow_hierarchy:
choice = random.choice(NEW_STRUCT_OPTS)
else:
choice = NEW_STRUCT_OPTS[0]
if self.args.force_symmetric:
choice = 'l2-symmetry'
if only_one:
choice = 'l1-basic'
if self.args.walker_force_no_sym:
choice = 'l1-basic'
new_node_list = []
if choice == 'l1-basic':
# adding one basic node
new_node = Node(-1,
model_gen.gen_test_node_attr(task=self.args.task,
node_num=2, discrete_rv=self.discrete
)[-1]
)
new_node_list.append(new_node)
elif choice == 'l2-symmetry':
# adding 2 symmetric nodes
attr1, attr2 = [
model_gen.gen_test_node_attr(task=self.args.task,
node_num=2,
discrete_rv=self.discrete
)[-1]
for i in range(2)
]
same_attr = ['a_size', 'b_size', 'c_size', 'geom_type',
'joint_range']
for item in same_attr:
attr2[item] = attr1[item]
# set certain attributes
attr2['u'] = np.pi - attr1['u']
while attr2['u'] < 0: attr2['u'] += 2 * np.pi
attr2['v'] = attr1['v']
attr2['axis_x'] = attr1['axis_x']
attr2['axis_y'] = -attr1['axis_y']
# create the new node with corresponding attributes
node1 = Node(-1, attr1)
node2 = Node(-1, attr2)
new_node_list.append(node1)
new_node_list.append(node2)
else:
raise NotImplementedError
if self.args.force_grow_at_ends:
for node in new_node_list:
node.attr['axis_x'] = 1 if node.attr['axis_x'] >= 0 else -1
return new_node_list | def generate_one_node(self, only_one=False):
''' return a list of new nodes being generated
'''
# different policy for adding new hierarchical structure
if self.allow_hierarchy:
choice = random.choice(NEW_STRUCT_OPTS)
else:
choice = NEW_STRUCT_OPTS[0]
if self.args.force_symmetric:
choice = 'l2-symmetry'
if only_one:
choice = 'l1-basic'
if self.args.walker_force_no_sym:
choice = 'l1-basic'
new_node_list = []
if choice == 'l1-basic':
# adding one basic node
new_node = Node(-1,
model_gen.gen_test_node_attr(task=self.args.task,
node_num=2, discrete_rv=self.discrete
)[-1]
)
new_node_list.append(new_node)
elif choice == 'l2-symmetry':
# adding 2 symmetric nodes
attr1, attr2 = [
model_gen.gen_test_node_attr(task=self.args.task,
node_num=2,
discrete_rv=self.discrete
)[-1]
for i in range(2)
]
same_attr = ['a_size', 'b_size', 'c_size', 'geom_type',
'joint_range']
for item in same_attr:
attr2[item] = attr1[item]
# set certain attributes
attr2['u'] = np.pi - attr1['u']
while attr2['u'] < 0: attr2['u'] += 2 * np.pi
attr2['v'] = attr1['v']
attr2['axis_x'] = attr1['axis_x']
attr2['axis_y'] = -attr1['axis_y']
# create the new node with corresponding attributes
node1 = Node(-1, attr1)
node2 = Node(-1, attr2)
new_node_list.append(node1)
new_node_list.append(node2)
else:
raise NotImplementedError
if self.args.force_grow_at_ends:
for node in new_node_list:
node.attr['axis_x'] = 1 if node.attr['axis_x'] >= 0 else -1
return new_node_list |
Python | def parse_rank_info(local_dir, topk=5):
''' parse the rank information and select the top-performing species
return a list of species that we are interested in for generating images
'''
data_dir = os.path.join(local_dir, 'species_data')
generation_num = 0
selected_species = []
for filename in glob.glob(data_dir + '/*'):
if 'rank_info' not in filename: continue
generation_num += 1
rank_info = np.load(filename).item()
for i in range(topk):
selected_species.append( (rank_info['SpcID'][i],
rank_info['AvgRwd'][i]) )
print('Generation examined %d' % generation_num)
selected_species = sorted(selected_species, key=lambda x: x[1])
selected_species = set([x[0] for x in selected_species])
return list(selected_species) | def parse_rank_info(local_dir, topk=5):
''' parse the rank information and select the top-performing species
return a list of species that we are interested in for generating images
'''
data_dir = os.path.join(local_dir, 'species_data')
generation_num = 0
selected_species = []
for filename in glob.glob(data_dir + '/*'):
if 'rank_info' not in filename: continue
generation_num += 1
rank_info = np.load(filename).item()
for i in range(topk):
selected_species.append( (rank_info['SpcID'][i],
rank_info['AvgRwd'][i]) )
print('Generation examined %d' % generation_num)
selected_species = sorted(selected_species, key=lambda x: x[1])
selected_species = set([x[0] for x in selected_species])
return list(selected_species) |
Python | def verify_graph(adj_matrix):
'''
check whether the graph is a valid tree for generating the xml
model
'''
N, _ = adj_matrix.shape
# node cannot connect to itself
for i in range(N):
if adj_matrix[i, i] > 0:
pdb.set_trace()
return False
# the matrix must be diagnol-symmetric
for i in range(N):
for j in range(i, N):
if adj_matrix[i, j] != adj_matrix[j, i]:
pdb.set_trace()
return False
# each node must have eactly one parent (except for root)
for i in range(1, N):
col_i = adj_matrix[:i, i] # only consider upper triangle of the matrix
parent_connection = np.where(col_i > 0)[0]
if len(parent_connection) > 1:
pdb.set_trace()
return False
return True | def verify_graph(adj_matrix):
'''
check whether the graph is a valid tree for generating the xml
model
'''
N, _ = adj_matrix.shape
# node cannot connect to itself
for i in range(N):
if adj_matrix[i, i] > 0:
pdb.set_trace()
return False
# the matrix must be diagnol-symmetric
for i in range(N):
for j in range(i, N):
if adj_matrix[i, j] != adj_matrix[j, i]:
pdb.set_trace()
return False
# each node must have eactly one parent (except for root)
for i in range(1, N):
col_i = adj_matrix[:i, i] # only consider upper triangle of the matrix
parent_connection = np.where(col_i > 0)[0]
if len(parent_connection) > 1:
pdb.set_trace()
return False
return True |
Python | def perturb_local(node_attr, perturb_geom=False, discrete=True):
''' perform local perturbation according to current attributes
'''
new_attr = copy.deepcopy(node_attr)
# u, v for specifying position relative to parents
new_attr['u'] = node_attr['u'] + \
model_gen_util.gaussian_noise(0, np.pi / 6,
discrete, np.pi / 2.0)
new_attr['v'] = node_attr['v'] + \
model_gen_util.gaussian_noise(0, np.pi / 6,
discrete, np.pi / 2.0)
new_attr['u'] = \
float(np.clip(new_attr['u'], 1e-8, 2 * np.pi - 1e-8))
new_attr['v'] = \
float(np.clip(new_attr['v'], 1e-8, np.pi - 1e-8))
# x, y coordinate for child's relative frame
new_attr['axis_x'] = node_attr['axis_x'] + \
model_gen_util.gaussian_noise(0, 0.1, discrete, 0.2)
new_attr['axis_y'] = node_attr['axis_y'] + \
model_gen_util.gaussian_noise(0, 0.1, discrete, 0.2)
new_attr['axis_x'] = \
float(np.clip(new_attr['axis_x'], 0.2, 1.0 - 1e-8))
new_attr['axis_y'] = \
float(np.clip(new_attr['axis_y'], 0.2, 1.0 - 1e-8))
# a, b, c child size
new_attr['a_size'] = node_attr['a_size'] + \
model_gen_util.gaussian_noise(0, 0.002, discrete, 0.002)
new_attr['b_size'] = node_attr['b_size'] + \
model_gen_util.gaussian_noise(0, 0.002, discrete, 0.002)
new_attr['c_size'] = node_attr['c_size'] + \
model_gen_util.gaussian_noise(0, 0.002, discrete, 0.002)
new_attr['a_size'] = float(np.clip(new_attr['a_size'], 0.002, 0.03))
new_attr['b_size'] = float(np.clip(new_attr['b_size'], 0.002, 0.03))
new_attr['c_size'] = float(np.clip(new_attr['c_size'], 0.002, 0.03))
# joint range
new_attr['joint_range'] = new_attr['joint_range'] + \
model_gen_util.gaussian_noise(0, 10, discrete, 10)
new_attr['joint_range'] = \
int(np.clip(new_attr['joint_range'], 30, 90))
return new_attr | def perturb_local(node_attr, perturb_geom=False, discrete=True):
''' perform local perturbation according to current attributes
'''
new_attr = copy.deepcopy(node_attr)
# u, v for specifying position relative to parents
new_attr['u'] = node_attr['u'] + \
model_gen_util.gaussian_noise(0, np.pi / 6,
discrete, np.pi / 2.0)
new_attr['v'] = node_attr['v'] + \
model_gen_util.gaussian_noise(0, np.pi / 6,
discrete, np.pi / 2.0)
new_attr['u'] = \
float(np.clip(new_attr['u'], 1e-8, 2 * np.pi - 1e-8))
new_attr['v'] = \
float(np.clip(new_attr['v'], 1e-8, np.pi - 1e-8))
# x, y coordinate for child's relative frame
new_attr['axis_x'] = node_attr['axis_x'] + \
model_gen_util.gaussian_noise(0, 0.1, discrete, 0.2)
new_attr['axis_y'] = node_attr['axis_y'] + \
model_gen_util.gaussian_noise(0, 0.1, discrete, 0.2)
new_attr['axis_x'] = \
float(np.clip(new_attr['axis_x'], 0.2, 1.0 - 1e-8))
new_attr['axis_y'] = \
float(np.clip(new_attr['axis_y'], 0.2, 1.0 - 1e-8))
# a, b, c child size
new_attr['a_size'] = node_attr['a_size'] + \
model_gen_util.gaussian_noise(0, 0.002, discrete, 0.002)
new_attr['b_size'] = node_attr['b_size'] + \
model_gen_util.gaussian_noise(0, 0.002, discrete, 0.002)
new_attr['c_size'] = node_attr['c_size'] + \
model_gen_util.gaussian_noise(0, 0.002, discrete, 0.002)
new_attr['a_size'] = float(np.clip(new_attr['a_size'], 0.002, 0.03))
new_attr['b_size'] = float(np.clip(new_attr['b_size'], 0.002, 0.03))
new_attr['c_size'] = float(np.clip(new_attr['c_size'], 0.002, 0.03))
# joint range
new_attr['joint_range'] = new_attr['joint_range'] + \
model_gen_util.gaussian_noise(0, 10, discrete, 10)
new_attr['joint_range'] = \
int(np.clip(new_attr['joint_range'], 30, 90))
return new_attr |
Python | def perturb_attr(node_attr, perturb_geom=False, perturb_discrete=True):
'''
brief: perturb the 7D parameters
NOTE: some basic stuff
1. consider whether the perturbation physically makes sense
(the perturbation will always makes sense
if we have reasonable upper and lower bounds)
'''
N = len(node_attr)
# sample the number of nodes to perturb attribute
num_perturb = random.randint(1, N - 1)
node_list = list(
np.random.choice(list(range(1, N)), num_perturb, replace=False)
)
for random_node in node_list:
# independently sample a new set of attributes
new_attr = perturb_local(node_attr[random_node],
discrete=perturb_discrete)
# replace the current attributes to the latest
node_attr[random_node] = new_attr
return node_attr | def perturb_attr(node_attr, perturb_geom=False, perturb_discrete=True):
'''
brief: perturb the 7D parameters
NOTE: some basic stuff
1. consider whether the perturbation physically makes sense
(the perturbation will always makes sense
if we have reasonable upper and lower bounds)
'''
N = len(node_attr)
# sample the number of nodes to perturb attribute
num_perturb = random.randint(1, N - 1)
node_list = list(
np.random.choice(list(range(1, N)), num_perturb, replace=False)
)
for random_node in node_list:
# independently sample a new set of attributes
new_attr = perturb_local(node_attr[random_node],
discrete=perturb_discrete)
# replace the current attributes to the latest
node_attr[random_node] = new_attr
return node_attr |
Python | def perturb_one_local(node_attr, task='fish', perturb_geom=False, discrete=True):
''' perform local perturbation according to current attributes
'''
new_attr = copy.deepcopy(node_attr)
if 'fish' in task:
constraint = species_info.CREATURE_HARD_CONSTRAINT['fish']
elif 'walker' in task:
constraint = species_info.CREATURE_HARD_CONSTRAINT['walker']
elif 'cheetah' in task:
constraint = species_info.CREATURE_HARD_CONSTRAINT['cheetah']
elif 'hopper' in task:
constraint = species_info.CREATURE_HARD_CONSTRAINT['hopper']
attr_list = ['u', 'v', 'axis_x', 'axis_y',
'a_size', 'b_size', 'c_size', 'joint_range']
for attr in attr_list:
low, high = constraint[attr]
step_size = (high - low) / 6 # ideally this should be a hyperparameter to tune
new_attr[attr] = node_attr[attr] + \
model_gen_util.gaussian_noise(0, step_size/2,
discrete, step_size)
new_attr[attr] = \
float(np.clip(new_attr[attr], low, high))
if 'joint_range' == attr:
new_attr[attr] = int(new_attr[attr])
return new_attr | def perturb_one_local(node_attr, task='fish', perturb_geom=False, discrete=True):
''' perform local perturbation according to current attributes
'''
new_attr = copy.deepcopy(node_attr)
if 'fish' in task:
constraint = species_info.CREATURE_HARD_CONSTRAINT['fish']
elif 'walker' in task:
constraint = species_info.CREATURE_HARD_CONSTRAINT['walker']
elif 'cheetah' in task:
constraint = species_info.CREATURE_HARD_CONSTRAINT['cheetah']
elif 'hopper' in task:
constraint = species_info.CREATURE_HARD_CONSTRAINT['hopper']
attr_list = ['u', 'v', 'axis_x', 'axis_y',
'a_size', 'b_size', 'c_size', 'joint_range']
for attr in attr_list:
low, high = constraint[attr]
step_size = (high - low) / 6 # ideally this should be a hyperparameter to tune
new_attr[attr] = node_attr[attr] + \
model_gen_util.gaussian_noise(0, step_size/2,
discrete, step_size)
new_attr[attr] = \
float(np.clip(new_attr[attr], low, high))
if 'joint_range' == attr:
new_attr[attr] = int(new_attr[attr])
return new_attr |
Python | def perturb_one_attr(node_attr, task='fish', perturb_geom=False, perturb_discrete=True):
'''
brief: perturb the 7D parameters
NOTE: some basic stuff
1. consider whether the perturbation physically makes sense
(the perturbation will always makes sense
if we have reasonable upper and lower bounds)
'''
new_attr = perturb_one_local(node_attr, task=task,
discrete=perturb_discrete
)
return new_attr | def perturb_one_attr(node_attr, task='fish', perturb_geom=False, perturb_discrete=True):
'''
brief: perturb the 7D parameters
NOTE: some basic stuff
1. consider whether the perturbation physically makes sense
(the perturbation will always makes sense
if we have reasonable upper and lower bounds)
'''
new_attr = perturb_one_local(node_attr, task=task,
discrete=perturb_discrete
)
return new_attr |
Python | def render(pixel):
''' the function used to render the simulation
'''
return | def render(pixel):
''' the function used to render the simulation
'''
return |
Python | def add_mujoco_options(root, options):
''' add default and options
QUESTION: a lot of the options of the model is environment specific
should we create separate function for loading different environment
based on the options
'''
try:
density = str(options['density'])
except:
density = '5000'
try:
timestep = str(options['timestep'])
except:
timestep = '0.004'
option = etree.Element('option', timestep=timestep, density=density)
flag = etree.Element('flag', gravity='disable', constraint='disable')
option.append(flag)
root.append(option)
# some defaults for fish
default_sec = etree.Element('default')
general = etree.Element('general', ctrllimited='true')
default_sec.append(general)
# joints and geom defaults for fish
fish_default = etree.fromstring('<default class="fish"></default>')
fish_default_joint = etree.Element('joint', type='hinge',
limited='false',
range='-60 60', damping='2e-5',
solreflimit='.1 1',
solimplimit='0 .8 .1')
fish_default_geom = etree.Element('geom', material='self')
fish_default.append(fish_default_joint)
fish_default.append(fish_default_geom)
default_sec.append(fish_default)
root.append(default_sec)
return root | def add_mujoco_options(root, options):
''' add default and options
QUESTION: a lot of the options of the model is environment specific
should we create separate function for loading different environment
based on the options
'''
try:
density = str(options['density'])
except:
density = '5000'
try:
timestep = str(options['timestep'])
except:
timestep = '0.004'
option = etree.Element('option', timestep=timestep, density=density)
flag = etree.Element('flag', gravity='disable', constraint='disable')
option.append(flag)
root.append(option)
# some defaults for fish
default_sec = etree.Element('default')
general = etree.Element('general', ctrllimited='true')
default_sec.append(general)
# joints and geom defaults for fish
fish_default = etree.fromstring('<default class="fish"></default>')
fish_default_joint = etree.Element('joint', type='hinge',
limited='false',
range='-60 60', damping='2e-5',
solreflimit='.1 1',
solimplimit='0 .8 .1')
fish_default_geom = etree.Element('geom', material='self')
fish_default.append(fish_default_joint)
fish_default.append(fish_default_geom)
default_sec.append(fish_default)
root.append(default_sec)
return root |
Python | def rotation_matrix(axis, angle):
''' rotation matrix generated by angle around axis
'''
if not (angle >= 0 and angle <= np.pi):
pdb.set_trace()
cos = np.cos(angle)
sin = np.sin(angle)
if axis == 'x':
R = np.array([[1, 0, 0],
[0, cos, -sin],
[0, sin, cos]])
elif axis == 'y':
R = np.array([[ cos, 0, sin],
[ 0, 1, 0],
[-sin, 0, cos]])
elif axis == 'z':
R = np.array([[cos, -sin, 0],
[sin, cos, 0],
[ 0, 0, 1]])
else:
raise RuntimeError('given axis not available')
return R | def rotation_matrix(axis, angle):
''' rotation matrix generated by angle around axis
'''
if not (angle >= 0 and angle <= np.pi):
pdb.set_trace()
cos = np.cos(angle)
sin = np.sin(angle)
if axis == 'x':
R = np.array([[1, 0, 0],
[0, cos, -sin],
[0, sin, cos]])
elif axis == 'y':
R = np.array([[ cos, 0, sin],
[ 0, 1, 0],
[-sin, 0, cos]])
elif axis == 'z':
R = np.array([[cos, -sin, 0],
[sin, cos, 0],
[ 0, 0, 1]])
else:
raise RuntimeError('given axis not available')
return R |
Python | def euler_rotation(angle1, angle2, angle3):
''' return the rotation matrix as described by euler angle
angle1: rotate around z axis
angle2: rotate around y' axis
angle3: rotate around z'' axis
'''
R = np.zeros((3, 3))
R_z = rotation_matrix('z', angle1)
R_y = rotation_matrix('y', angle2)
R = np.matmul(R_z, R_y)
R_z = rotation_matrix('z', angle3)
R = np.matmul(R, R_z)
return R | def euler_rotation(angle1, angle2, angle3):
''' return the rotation matrix as described by euler angle
angle1: rotate around z axis
angle2: rotate around y' axis
angle3: rotate around z'' axis
'''
R = np.zeros((3, 3))
R_z = rotation_matrix('z', angle1)
R_y = rotation_matrix('y', angle2)
R = np.matmul(R_z, R_y)
R_z = rotation_matrix('z', angle3)
R = np.matmul(R, R_z)
return R |
Python | def ellipsoid_line_intersection(a, b, c, dx, dy, dz):
'''
input: 1. a, b, c: params to specify an ellipsoid (centered at origin)
2. dx, dy, dz: direction vector to denote a line at origin
output:
1. the point coordinate where the line intersects the ellipsoid
that is in the direction of the line vector
NOTE: 1. there is guarantee that there will be intersection between the line
and the ellipsoid
2. it seems that the solver will always return the neg result first
[negative result, positive result]
Thus we need to further determine which one is closer to the direction
vector and use that as the joint pivot point
'''
t = Symbol('t')
# plug in the line equation p(t) = dx * t + dy * t + dz * t
# to the ellipsoid function
ellipsoid = (dx * t)**2 / a**2 + (dy * t)**2 / b**2 + (dz * t)**2 / c**2 - 1
res = solve(ellipsoid, t)
one_res = res[1].evalf()
return float(one_res) * np.array([dx, dy, dz]) | def ellipsoid_line_intersection(a, b, c, dx, dy, dz):
'''
input: 1. a, b, c: params to specify an ellipsoid (centered at origin)
2. dx, dy, dz: direction vector to denote a line at origin
output:
1. the point coordinate where the line intersects the ellipsoid
that is in the direction of the line vector
NOTE: 1. there is guarantee that there will be intersection between the line
and the ellipsoid
2. it seems that the solver will always return the neg result first
[negative result, positive result]
Thus we need to further determine which one is closer to the direction
vector and use that as the joint pivot point
'''
t = Symbol('t')
# plug in the line equation p(t) = dx * t + dy * t + dz * t
# to the ellipsoid function
ellipsoid = (dx * t)**2 / a**2 + (dy * t)**2 / b**2 + (dz * t)**2 / c**2 - 1
res = solve(ellipsoid, t)
one_res = res[1].evalf()
return float(one_res) * np.array([dx, dy, dz]) |
Python | def homogeneous_inverse(H):
''' given a homogeneous transformation, find its inverse
'''
R = H[0:3, 0:3]
d = H[0:3, 3]
invH = np.zeros((4,4))
invH[0:3, 0:3] = R.T
invH[0:3, 3] = - np.matmul(R.T, d)
invH[3, 3] = 1
return invH | def homogeneous_inverse(H):
''' given a homogeneous transformation, find its inverse
'''
R = H[0:3, 0:3]
d = H[0:3, 3]
invH = np.zeros((4,4))
invH[0:3, 0:3] = R.T
invH[0:3, 3] = - np.matmul(R.T, d)
invH[3, 3] = 1
return invH |
Python | def homogeneous_transform(R, d):
''' return the homogeneous transformation given the rotation matrix
and translation vector
'''
H = np.zeros((4, 4))
H[0:3, 0:3] = R
H[0:3, 3] = d
H[3, 3] = 1
return H | def homogeneous_transform(R, d):
''' return the homogeneous transformation given the rotation matrix
and translation vector
'''
H = np.zeros((4, 4))
H[0:3, 0:3] = R
H[0:3, 3] = d
H[3, 3] = 1
return H |
Python | def homogeneous_representation(p):
''' return the homogeneous representation of point p of dim 3
'''
P = np.hstack((p, np.array(1)))
return P | def homogeneous_representation(p):
''' return the homogeneous representation of point p of dim 3
'''
P = np.hstack((p, np.array(1)))
return P |
Python | def ellipsoid_normal_vec(a, b, c, p):
''' return the unit normal vector of an ellipsoid at origin with param [a, b, c]
at point p
'''
# verify point is on the ellipsoid
x, y, z = p.tolist()
assert np.isclose(1, x**2/a**2 + y**2/b**2 + z**2/c**2, atol=1e-6)
# equivalent to partial derivate of the ellipsoid function
vec_x = 2 * x / a**2
vec_y = 2 * y / b**2
vec_z = 2 * z / c**2
vec = np.array([vec_x, vec_y, vec_z])
return vec / np.linalg.norm(vec) | def ellipsoid_normal_vec(a, b, c, p):
''' return the unit normal vector of an ellipsoid at origin with param [a, b, c]
at point p
'''
# verify point is on the ellipsoid
x, y, z = p.tolist()
assert np.isclose(1, x**2/a**2 + y**2/b**2 + z**2/c**2, atol=1e-6)
# equivalent to partial derivate of the ellipsoid function
vec_x = 2 * x / a**2
vec_y = 2 * y / b**2
vec_z = 2 * z / c**2
vec = np.array([vec_x, vec_y, vec_z])
return vec / np.linalg.norm(vec) |
Python | def angle_between(vec1, vec2):
''' return the value in radians and in degrees
'''
theta = np.arccos( np.matmul(vec1.T, vec2) / (1e-8 + np.linalg.norm(vec1) * np.linalg.norm(vec2)) )
return (theta, theta * RAD_TO_DEG) | def angle_between(vec1, vec2):
''' return the value in radians and in degrees
'''
theta = np.arccos( np.matmul(vec1.T, vec2) / (1e-8 + np.linalg.norm(vec1) * np.linalg.norm(vec2)) )
return (theta, theta * RAD_TO_DEG) |
Python | def ellipsoid_boundary_pt(a, b, c):
''' given [a, b, c] which specifies an ellipsoid at origin
return the 6 boundary points' coordinate
'''
x1 = np.array([a, 0, 0])
x2 = np.array([-a, 0, 0])
y1 = np.array([0, b, 0])
y2 = np.array([0, -b, 0])
z1 = np.array([0, 0, c])
z2 = np.array([0, 0, -c])
return [x1, x2, y1, y2, z1, z2] | def ellipsoid_boundary_pt(a, b, c):
''' given [a, b, c] which specifies an ellipsoid at origin
return the 6 boundary points' coordinate
'''
x1 = np.array([a, 0, 0])
x2 = np.array([-a, 0, 0])
y1 = np.array([0, b, 0])
y2 = np.array([0, -b, 0])
z1 = np.array([0, 0, c])
z2 = np.array([0, 0, -c])
return [x1, x2, y1, y2, z1, z2] |
Python | def add_mujoco_actuator(root, adj_matrix):
''' essentially, all the joints are actuators.
'''
dfs_order = model_gen_util.dfs_order(adj_matrix)
actuator = etree.Element('actuator')
for edge in dfs_order:
edge_x = '%s_x' % edge
edge_y = '%s_y' % edge
edge_z = '%s_z' % edge
edges = [edge_x, edge_y, edge_z]
positions = [etree.Element('position', name=item, joint=item, ctrlrange='-1 1', kp='5e-4')
for item in edges]
for item in positions: actuator.append(item)
root.append(actuator)
return root | def add_mujoco_actuator(root, adj_matrix):
''' essentially, all the joints are actuators.
'''
dfs_order = model_gen_util.dfs_order(adj_matrix)
actuator = etree.Element('actuator')
for edge in dfs_order:
edge_x = '%s_x' % edge
edge_y = '%s_y' % edge
edge_z = '%s_z' % edge
edges = [edge_x, edge_y, edge_z]
positions = [etree.Element('position', name=item, joint=item, ctrlrange='-1 1', kp='5e-4')
for item in edges]
for item in positions: actuator.append(item)
root.append(actuator)
return root |
Python | def add_worldbody(root, adj_matrix, node_attr_list):
''' parse the adj_matrix to get the tree structure
'''
def worldbody_preliminary(worldbody):
''' setting up cameras
'''
geom1 = etree.Element('geom', name='floor', type='plane',
conaffinity='1', pos='248 0 0',
size='250 .8 .2', material='grid',
zaxis='0 0 1')
worldbody.append(geom1)
return worldbody
def torso_preliminary(torso):
''' copying from the dm_control fish default settings
'''
light = etree.Element('light', name="light", mode='trackcom')
torso.append(light)
camera1 = etree.Element('camera', name='side', pos='0 -2 0.7',
euler='60 0 0', mode='trackcom')
camera2 = etree.Element('camera', name='back', pos='-5 0 0.5',
xyaxes='0 -1 0 1 0 3', mode='trackcom')
torso.append(camera1)
torso.append(camera2)
torso_size = '0.07 0.3'
torso_geom = etree.Element('geom', name="torso", size=torso_size)
torso.append(torso_geom)
# free_joint = etree.fromstring('<joint name="rooty" type="free" stiffness="0" limited="false" armature="0" damping="0"/>')
torso_z = etree.fromstring('<joint name="rootz" type="slide" axis="0 0 1" limited="false" armature="0" damping="0"/>')
torso_x = etree.fromstring('<joint name="rootx" type="slide" axis="1 0 0" limited="false" armature="0" damping="0"/>')
torso_y = etree.fromstring('<joint name="rooty" type="hinge" axis="0 1 0" limited="false" armature="0" damping="0"/>')
# NOTE: this order is mandatory for this particular task.
# the bug may be caused by dm_control suite
torso.append(torso_z)
torso.append(torso_x)
torso.append(torso_y)
return torso
################ START PARSING THE WORLDBODY ################
worldbody = etree.Element('worldbody')
worldbody = worldbody_preliminary(worldbody)
# parse the matrix
N, _ = adj_matrix.shape
body_dict = {}
info_dict = {} # log the needed information given a node
# the root of the model is always fixed
body_root = etree.Element('body', name='torso', pos='0 0 1.3',
childclass='walker')
body_root = torso_preliminary(body_root)
root_info = {}
root_info['a_size'] = node_attr_list[0]['a_size']
root_info['b_size'] = node_attr_list[0]['b_size']
root_info['c_size'] = node_attr_list[0]['c_size']
# for determining the center of the capsule relative to the body joint
root_info['center_rel_pos'] = 0
info_dict[0] = root_info
body_dict[0] = body_root
# initilize the parent list to go throught the entire matrix
parent_list = [0]
while len(parent_list) != 0:
parent_node = parent_list.pop(0)
parent_row = np.copy(adj_matrix[parent_node])
for i in range(parent_node+1): parent_row[i] = 0
child_list = np.where(parent_row)[0].tolist()
while True:
try: child_node = child_list.pop(0)
except: break
# parent-child relationship
# print('P-C relationship:', parent_node, child_node)
node_attr = node_attr_list[child_node]
node_name = 'node-%d'%(child_node)
# this is parent's ellipsoid information
parent_info = info_dict[parent_node]
a_parent = parent_info['a_size']
b_parent = parent_info['b_size']
c_parent = parent_info['c_size']
center_rel_pos = parent_info['center_rel_pos']
# getting node attributes from the list
u = node_attr['u'] # using these 2 values for determining the range
v = node_attr['v'] # of the joint
axis_x = node_attr['axis_x'] # used to determine the relative position
axis_y = node_attr['axis_y'] # w.r.t the parent capsule
a_child = node_attr['a_size'] # using this as the capsule radius
b_child = node_attr['b_size'] # using this as the capsule h
c_child = node_attr['c_size']
# compute the translational and rotational matrix
child_info = {}
# store attributes that defines the child's geom
child_info['a_size'] = a_child
child_info['b_size'] = b_child
child_info['c_size'] = c_child
# set the stitching point relative to parent
a = min([node_attr['axis_x'], node_attr['axis_y']])
b = max([node_attr['axis_x'], node_attr['axis_y']])
stitch_ratio = node_attr['axis_x'] / 1
if not(stitch_ratio <= 1.01 and stitch_ratio >= -1.01):
import pdb; pdb.set_trace()
stitch_pt = b_parent * stitch_ratio + center_rel_pos
body_pos = '0 0 %f' % (stitch_pt)
# body translation
if node_attr['axis_x'] * node_attr['axis_y'] >= 0:
geom_pos = '0 0 -%f' % (b_child)
child_info['center_rel_pos'] = -b_child
else:
geom_pos = '0 0 %f' % (b_child)
child_info['center_rel_pos'] = b_child
joint_pos = '0 0 0'
# now create the body
body_child = etree.Element('body', name=node_name, pos=body_pos)
# add geom
geom_type = 2 # for all planar creates, we use capsule
capsule_size = '%f %f' % (a_child, b_child)
geom = etree.Element('geom', name=node_name, pos=geom_pos, size=capsule_size)
body_child.append(geom)
# add joints
joint_type = adj_matrix[parent_node, child_node]
joint_axis = model_gen_util.get_encoding(joint_type)
joint_range = node_attr['joint_range']
range1 = node_attr['u'] / (2.0 * np.pi) * -90
range2 = node_attr['v'] / (1.0 * np.pi) * 60 + 1
range2 = range1 + 90 + 1
if joint_axis[0] == 1:
x_joint = etree.fromstring("<joint name='%d-%d_x' axis='0 -1 0' pos='%s' range='%d %d'/>" % \
(parent_node, child_node, joint_pos, range1, range2))
body_child.append(x_joint)
if joint_axis[1] == 1:
y_joint = etree.fromstring("<joint name='%d-%d_y' axis='0 -1 0' pos='%s' range='%d %d'/>" % \
(parent_node, child_node, joint_pos, range1, range2))
body_child.append(y_joint)
if joint_axis[2] == 1:
z_joint = etree.fromstring("<joint name='%d-%d_z' axis='0 -1 0' pos='%s' range='%d %d'/>" % \
(parent_node, child_node, joint_pos, range1, range2))
body_child.append(z_joint)
# need to add 2 sites as sensory inputs
site1_pos = '0 0 0'
site2_pos = '0 0 %f' % (2 * child_info['center_rel_pos'])
site1 = etree.Element('site', name='touch1-%s' % (node_name), pos=site1_pos)
site2 = etree.Element('site', name='touch2-%s' % (node_name), pos=site2_pos)
body_child.append(site1)
body_child.append(site2)
# logging the information
body_dict[parent_node].append(body_child)
body_dict[child_node] = body_child # register child's body struct in case it has child
info_dict[child_node] = child_info
# child becomes the parent for further examination
parent_list.append(child_node)
worldbody.append(body_dict[0])
root.append(worldbody)
return root | def add_worldbody(root, adj_matrix, node_attr_list):
''' parse the adj_matrix to get the tree structure
'''
def worldbody_preliminary(worldbody):
''' setting up cameras
'''
geom1 = etree.Element('geom', name='floor', type='plane',
conaffinity='1', pos='248 0 0',
size='250 .8 .2', material='grid',
zaxis='0 0 1')
worldbody.append(geom1)
return worldbody
def torso_preliminary(torso):
''' copying from the dm_control fish default settings
'''
light = etree.Element('light', name="light", mode='trackcom')
torso.append(light)
camera1 = etree.Element('camera', name='side', pos='0 -2 0.7',
euler='60 0 0', mode='trackcom')
camera2 = etree.Element('camera', name='back', pos='-5 0 0.5',
xyaxes='0 -1 0 1 0 3', mode='trackcom')
torso.append(camera1)
torso.append(camera2)
torso_size = '0.07 0.3'
torso_geom = etree.Element('geom', name="torso", size=torso_size)
torso.append(torso_geom)
# free_joint = etree.fromstring('<joint name="rooty" type="free" stiffness="0" limited="false" armature="0" damping="0"/>')
torso_z = etree.fromstring('<joint name="rootz" type="slide" axis="0 0 1" limited="false" armature="0" damping="0"/>')
torso_x = etree.fromstring('<joint name="rootx" type="slide" axis="1 0 0" limited="false" armature="0" damping="0"/>')
torso_y = etree.fromstring('<joint name="rooty" type="hinge" axis="0 1 0" limited="false" armature="0" damping="0"/>')
# NOTE: this order is mandatory for this particular task.
# the bug may be caused by dm_control suite
torso.append(torso_z)
torso.append(torso_x)
torso.append(torso_y)
return torso
################ START PARSING THE WORLDBODY ################
worldbody = etree.Element('worldbody')
worldbody = worldbody_preliminary(worldbody)
# parse the matrix
N, _ = adj_matrix.shape
body_dict = {}
info_dict = {} # log the needed information given a node
# the root of the model is always fixed
body_root = etree.Element('body', name='torso', pos='0 0 1.3',
childclass='walker')
body_root = torso_preliminary(body_root)
root_info = {}
root_info['a_size'] = node_attr_list[0]['a_size']
root_info['b_size'] = node_attr_list[0]['b_size']
root_info['c_size'] = node_attr_list[0]['c_size']
# for determining the center of the capsule relative to the body joint
root_info['center_rel_pos'] = 0
info_dict[0] = root_info
body_dict[0] = body_root
# initilize the parent list to go throught the entire matrix
parent_list = [0]
while len(parent_list) != 0:
parent_node = parent_list.pop(0)
parent_row = np.copy(adj_matrix[parent_node])
for i in range(parent_node+1): parent_row[i] = 0
child_list = np.where(parent_row)[0].tolist()
while True:
try: child_node = child_list.pop(0)
except: break
# parent-child relationship
# print('P-C relationship:', parent_node, child_node)
node_attr = node_attr_list[child_node]
node_name = 'node-%d'%(child_node)
# this is parent's ellipsoid information
parent_info = info_dict[parent_node]
a_parent = parent_info['a_size']
b_parent = parent_info['b_size']
c_parent = parent_info['c_size']
center_rel_pos = parent_info['center_rel_pos']
# getting node attributes from the list
u = node_attr['u'] # using these 2 values for determining the range
v = node_attr['v'] # of the joint
axis_x = node_attr['axis_x'] # used to determine the relative position
axis_y = node_attr['axis_y'] # w.r.t the parent capsule
a_child = node_attr['a_size'] # using this as the capsule radius
b_child = node_attr['b_size'] # using this as the capsule h
c_child = node_attr['c_size']
# compute the translational and rotational matrix
child_info = {}
# store attributes that defines the child's geom
child_info['a_size'] = a_child
child_info['b_size'] = b_child
child_info['c_size'] = c_child
# set the stitching point relative to parent
a = min([node_attr['axis_x'], node_attr['axis_y']])
b = max([node_attr['axis_x'], node_attr['axis_y']])
stitch_ratio = node_attr['axis_x'] / 1
if not(stitch_ratio <= 1.01 and stitch_ratio >= -1.01):
import pdb; pdb.set_trace()
stitch_pt = b_parent * stitch_ratio + center_rel_pos
body_pos = '0 0 %f' % (stitch_pt)
# body translation
if node_attr['axis_x'] * node_attr['axis_y'] >= 0:
geom_pos = '0 0 -%f' % (b_child)
child_info['center_rel_pos'] = -b_child
else:
geom_pos = '0 0 %f' % (b_child)
child_info['center_rel_pos'] = b_child
joint_pos = '0 0 0'
# now create the body
body_child = etree.Element('body', name=node_name, pos=body_pos)
# add geom
geom_type = 2 # for all planar creates, we use capsule
capsule_size = '%f %f' % (a_child, b_child)
geom = etree.Element('geom', name=node_name, pos=geom_pos, size=capsule_size)
body_child.append(geom)
# add joints
joint_type = adj_matrix[parent_node, child_node]
joint_axis = model_gen_util.get_encoding(joint_type)
joint_range = node_attr['joint_range']
range1 = node_attr['u'] / (2.0 * np.pi) * -90
range2 = node_attr['v'] / (1.0 * np.pi) * 60 + 1
range2 = range1 + 90 + 1
if joint_axis[0] == 1:
x_joint = etree.fromstring("<joint name='%d-%d_x' axis='0 -1 0' pos='%s' range='%d %d'/>" % \
(parent_node, child_node, joint_pos, range1, range2))
body_child.append(x_joint)
if joint_axis[1] == 1:
y_joint = etree.fromstring("<joint name='%d-%d_y' axis='0 -1 0' pos='%s' range='%d %d'/>" % \
(parent_node, child_node, joint_pos, range1, range2))
body_child.append(y_joint)
if joint_axis[2] == 1:
z_joint = etree.fromstring("<joint name='%d-%d_z' axis='0 -1 0' pos='%s' range='%d %d'/>" % \
(parent_node, child_node, joint_pos, range1, range2))
body_child.append(z_joint)
# need to add 2 sites as sensory inputs
site1_pos = '0 0 0'
site2_pos = '0 0 %f' % (2 * child_info['center_rel_pos'])
site1 = etree.Element('site', name='touch1-%s' % (node_name), pos=site1_pos)
site2 = etree.Element('site', name='touch2-%s' % (node_name), pos=site2_pos)
body_child.append(site1)
body_child.append(site2)
# logging the information
body_dict[parent_node].append(body_child)
body_dict[child_node] = body_child # register child's body struct in case it has child
info_dict[child_node] = child_info
# child becomes the parent for further examination
parent_list.append(child_node)
worldbody.append(body_dict[0])
root.append(worldbody)
return root |
Python | def add_mujoco_actuator(root, adj_matrix, node_attr):
''' essentially, all the joints are actuators.
'''
dfs_order = model_gen_util.dfs_order(adj_matrix)
actuator = etree.Element('actuator')
for edge in dfs_order:
p, c = [int(x) for x in edge.split('-')]
joint_type = adj_matrix[p, c]
joint_axis = model_gen_util.get_encoding(joint_type)
edges = []
if joint_axis[0] == 1:
edge_x = '%s_x' % edge
edges.append(edge_x)
elif joint_axis[1] == 1:
edge_y = '%s_y' % edge
edges.append(edge_y)
elif joint_axis[2] == 1:
edge_z = '%s_z' % edge
edges.append(edge_z)
c_info = node_attr[c]['c_size']
gear_value = c_info
positions = [etree.Element('motor',
name=item, joint=item, gear='%d' % (gear_value))
for item in edges]
for item in positions: actuator.append(item)
root.append(actuator)
return root | def add_mujoco_actuator(root, adj_matrix, node_attr):
''' essentially, all the joints are actuators.
'''
dfs_order = model_gen_util.dfs_order(adj_matrix)
actuator = etree.Element('actuator')
for edge in dfs_order:
p, c = [int(x) for x in edge.split('-')]
joint_type = adj_matrix[p, c]
joint_axis = model_gen_util.get_encoding(joint_type)
edges = []
if joint_axis[0] == 1:
edge_x = '%s_x' % edge
edges.append(edge_x)
elif joint_axis[1] == 1:
edge_y = '%s_y' % edge
edges.append(edge_y)
elif joint_axis[2] == 1:
edge_z = '%s_z' % edge
edges.append(edge_z)
c_info = node_attr[c]['c_size']
gear_value = c_info
positions = [etree.Element('motor',
name=item, joint=item, gear='%d' % (gear_value))
for item in edges]
for item in positions: actuator.append(item)
root.append(actuator)
return root |
Python | def log_genealogy(self, parent_spc, child_spc):
''' log parent-child relationship in the overall gene tree
update on the self.gene_tree structure
a tree structure
'''
if parent_spc not in self.gene_tree:
self.gene_tree[parent_spc] = []
self.gene_tree[parent_spc].append(child_spc) | def log_genealogy(self, parent_spc, child_spc):
''' log parent-child relationship in the overall gene tree
update on the self.gene_tree structure
a tree structure
'''
if parent_spc not in self.gene_tree:
self.gene_tree[parent_spc] = []
self.gene_tree[parent_spc].append(child_spc) |
Python | def genealogy_with_style(genealogy):
''' add more styles such as coloring the connection link
in the visualization
'''
def process_node(node):
'''
'''
if len(node['children']) == 0:
return node
child_r_list = [c['best_r'] for c in node['children']]
sorted_r = sorted(child_r_list)
sorted_color = list(Color('black').range_to(Color('black'), len(sorted_r)))
max_c = max(child_r_list)
min_c = min(child_r_list)
for i, child in enumerate(node['children']):
try:
color_idx = sorted_r.index(child['best_r'])
red, green, blue = (x * 255 for x in sorted_color[color_idx].rgb)
child['level'] = 'rgb(%f %f %f)' % (red, green, blue)
except:
child['level'] = 'rgb(128, 128, 128)'
child = process_node(child)
return node
genealogy = process_node(genealogy)
with open('genealogy.json', 'w') as fh:
json.dump(genealogy, fh, indent=2)
return genealogy | def genealogy_with_style(genealogy):
''' add more styles such as coloring the connection link
in the visualization
'''
def process_node(node):
'''
'''
if len(node['children']) == 0:
return node
child_r_list = [c['best_r'] for c in node['children']]
sorted_r = sorted(child_r_list)
sorted_color = list(Color('black').range_to(Color('black'), len(sorted_r)))
max_c = max(child_r_list)
min_c = min(child_r_list)
for i, child in enumerate(node['children']):
try:
color_idx = sorted_r.index(child['best_r'])
red, green, blue = (x * 255 for x in sorted_color[color_idx].rgb)
child['level'] = 'rgb(%f %f %f)' % (red, green, blue)
except:
child['level'] = 'rgb(128, 128, 128)'
child = process_node(child)
return node
genealogy = process_node(genealogy)
with open('genealogy.json', 'w') as fh:
json.dump(genealogy, fh, indent=2)
return genealogy |
Python | def evolution_graph(pth, k=5):
''' create a graph for visualizing how evolution takes place
input:
1. pth should be
.../evolution_data/<some training session>/species_data
where all the <gen num>_rank_info.npy are stored
output:
1. a dictionary that can be served as a json for describing
the evolution progress
'''
def build_node(spc_id, reward, info=None):
'''
'''
node = {}
node['name'] = spc_id
node['reward'] = reward
node['children'] = []
node['info'] = info
return node
def build_tree(parent):
return
evolution = {}
# get all the generation ranking info
gen_list = []
for filename in glob.glob(pth + '/*'):
if filename.endswith('rank_info.npy') == False: continue
gen = int(filename.split('/')[-1].split('_')[0])
data = np.load(filename).item()
gen_list.append( (gen, data) )
gen_list = sorted(gen_list, key=lambda x: x[0])
# create the actual graph
evolution = build_node(-1, -233, info='other')
evolution['rank'] = 0
prev_gen = [evolution]
gen_pointer = 0
# for gen_data in gen_list:
while gen_pointer < len(gen_list):
gen_data = gen_list[gen_pointer]
gen_pointer += 1
i_gen, gen_data = gen_data
other_node = build_node(-2, -233, info='other@gen:%d' % i_gen)
prev_gen[0]['children'].append(other_node)
cur_gen = [other_node]
for i in range(k):
if i >= len(gen_data['SpcID']):
continue
spc_id = gen_data['SpcID'][i]
reward = gen_data['AvgRwd'][i]
p_spc = gen_data['PrtID'][i]
node = build_node(spc_id, reward)
cur_gen.append(node)
try:
prev_gen_spc = [x['name'] for x in prev_gen]
p_pos = prev_gen_spc.index(spc_id)
# node['level'] = 'yellow'
except:
try:
prev_gen_spc = [x['name'] for x in prev_gen]
p_pos = prev_gen_spc.index(p_spc)
except:
p_pos = 0 # the 'other' node
# import pdb; pdb.set_trace()
prev_gen[p_pos]['children'].append(node)
# add more styles to the current generation
sorted_r = sorted(x['reward'] for x in cur_gen[1:])
sorted_color = list(Color('black').range_to(Color("black"), len(sorted_r)))
max_r = max([x['reward'] for x in cur_gen[1:]])
min_r = min([x['reward'] for x in cur_gen[1:]])
for i, x in enumerate(cur_gen):
if x['info'] is None:
x['info'] = 'Spc:%d-R:%.2f' % (x['name'], x['reward'])
x['rank'] = i # rank for plotting the tree no actual meaning
if 'level' in x: continue
try:
color_idx = sorted_r.index(x['reward'])
red, green, blue = (x * 255 for x in sorted_color[color_idx].rgb)
x['level'] = 'rgb(%f %f %f)' % (red, green, blue)
except:
x['level'] = 'rgb(128, 128, 128)'
# representing all the other nodes
# other_node = build_node(-2, -233, info='other')
# prev_gen[-1]['children'].append(other_node)
# cur_gen.append(other_node)
# import pdb; pdb.set_trace()
prev_gen = cur_gen
pass
with open('evolution.json', 'w') as fh:
json.dump(evolution, fh, indent=2)
return evolution | def evolution_graph(pth, k=5):
''' create a graph for visualizing how evolution takes place
input:
1. pth should be
.../evolution_data/<some training session>/species_data
where all the <gen num>_rank_info.npy are stored
output:
1. a dictionary that can be served as a json for describing
the evolution progress
'''
def build_node(spc_id, reward, info=None):
'''
'''
node = {}
node['name'] = spc_id
node['reward'] = reward
node['children'] = []
node['info'] = info
return node
def build_tree(parent):
return
evolution = {}
# get all the generation ranking info
gen_list = []
for filename in glob.glob(pth + '/*'):
if filename.endswith('rank_info.npy') == False: continue
gen = int(filename.split('/')[-1].split('_')[0])
data = np.load(filename).item()
gen_list.append( (gen, data) )
gen_list = sorted(gen_list, key=lambda x: x[0])
# create the actual graph
evolution = build_node(-1, -233, info='other')
evolution['rank'] = 0
prev_gen = [evolution]
gen_pointer = 0
# for gen_data in gen_list:
while gen_pointer < len(gen_list):
gen_data = gen_list[gen_pointer]
gen_pointer += 1
i_gen, gen_data = gen_data
other_node = build_node(-2, -233, info='other@gen:%d' % i_gen)
prev_gen[0]['children'].append(other_node)
cur_gen = [other_node]
for i in range(k):
if i >= len(gen_data['SpcID']):
continue
spc_id = gen_data['SpcID'][i]
reward = gen_data['AvgRwd'][i]
p_spc = gen_data['PrtID'][i]
node = build_node(spc_id, reward)
cur_gen.append(node)
try:
prev_gen_spc = [x['name'] for x in prev_gen]
p_pos = prev_gen_spc.index(spc_id)
# node['level'] = 'yellow'
except:
try:
prev_gen_spc = [x['name'] for x in prev_gen]
p_pos = prev_gen_spc.index(p_spc)
except:
p_pos = 0 # the 'other' node
# import pdb; pdb.set_trace()
prev_gen[p_pos]['children'].append(node)
# add more styles to the current generation
sorted_r = sorted(x['reward'] for x in cur_gen[1:])
sorted_color = list(Color('black').range_to(Color("black"), len(sorted_r)))
max_r = max([x['reward'] for x in cur_gen[1:]])
min_r = min([x['reward'] for x in cur_gen[1:]])
for i, x in enumerate(cur_gen):
if x['info'] is None:
x['info'] = 'Spc:%d-R:%.2f' % (x['name'], x['reward'])
x['rank'] = i # rank for plotting the tree no actual meaning
if 'level' in x: continue
try:
color_idx = sorted_r.index(x['reward'])
red, green, blue = (x * 255 for x in sorted_color[color_idx].rgb)
x['level'] = 'rgb(%f %f %f)' % (red, green, blue)
except:
x['level'] = 'rgb(128, 128, 128)'
# representing all the other nodes
# other_node = build_node(-2, -233, info='other')
# prev_gen[-1]['children'].append(other_node)
# cur_gen.append(other_node)
# import pdb; pdb.set_trace()
prev_gen = cur_gen
pass
with open('evolution.json', 'w') as fh:
json.dump(evolution, fh, indent=2)
return evolution |
Python | def evolution_add_image(pth, evolution):
''' add image for evolution
input:
1. pth contains all the images
2. evolution tree without image
'''
def find_image(pth, name):
'''
'''
# search in the pth for the corresponding image
found = False
for filename in glob.glob(pth + '/*'):
abs_pth = filename
if filename.endswith('.png') == False: continue
if 'species_data' in filename:
gen, spc = filename.split('/')[-1].split('.')[0].split('_')
elif 'species_topology' in filename:
spc = filename.split('/')[-1].split('.')[0]
if int(spc) != name: continue
found = True
return abs_pth
if found != True:
return None
else:
assert 0
return None
if pth is None:
print('Not adding images for evolution')
return evolution
cur_ptr = evolution
parent_list = [evolution]
while len(parent_list) > 0:
item = parent_list.pop()
for child in item['children']:
if child['name'] == item['name']:
child['icon'] = None
if 'icon' not in item:
image_path = find_image(pth, item['name'])
item['icon'] = image_path
parent_list += item['children']
with open('evolution.json', 'w') as fh:
json.dump(evolution, fh, indent=4)
return evolution | def evolution_add_image(pth, evolution):
''' add image for evolution
input:
1. pth contains all the images
2. evolution tree without image
'''
def find_image(pth, name):
'''
'''
# search in the pth for the corresponding image
found = False
for filename in glob.glob(pth + '/*'):
abs_pth = filename
if filename.endswith('.png') == False: continue
if 'species_data' in filename:
gen, spc = filename.split('/')[-1].split('.')[0].split('_')
elif 'species_topology' in filename:
spc = filename.split('/')[-1].split('.')[0]
if int(spc) != name: continue
found = True
return abs_pth
if found != True:
return None
else:
assert 0
return None
if pth is None:
print('Not adding images for evolution')
return evolution
cur_ptr = evolution
parent_list = [evolution]
while len(parent_list) > 0:
item = parent_list.pop()
for child in item['children']:
if child['name'] == item['name']:
child['icon'] = None
if 'icon' not in item:
image_path = find_image(pth, item['name'])
item['icon'] = image_path
parent_list += item['children']
with open('evolution.json', 'w') as fh:
json.dump(evolution, fh, indent=4)
return evolution |
Python | def trans_PCA(orig_data, num_components=1):
''' convert original data to a PCA representation
input:
1. orig_data - (num_samples, num_features) numpy array
2. num_conponents - number of features that is used as output
output:
1. pca_data - (num_samples, num_components)
'''
pca = PCA(n_components=num_components)
pca.fit(orig_data)
pca_data = pca.transform(orig_data)
return pca_data, pca | def trans_PCA(orig_data, num_components=1):
''' convert original data to a PCA representation
input:
1. orig_data - (num_samples, num_features) numpy array
2. num_conponents - number of features that is used as output
output:
1. pca_data - (num_samples, num_components)
'''
pca = PCA(n_components=num_components)
pca.fit(orig_data)
pca_data = pca.transform(orig_data)
return pca_data, pca |
Python | def gen_gnn_param(task_name,
adj_mat, node_attr_list,
gnn_node_option='nG,yB',
root_connection_option='nN, Rn, sE',
gnn_output_option='shared',
gnn_embedding_option='parameter'):
''' this function resembles the functionality of parse_mujoco_graph
in mujoco_parser.py
WARNING: this is subject to evolution fish3d environment only
which has the following features
1. the mujoco model is deterministically generated from
adj_mat and node_attr_list
2. the structure of the model follows
a. body-body connection is through 3 joints
b. the root body has 3 joints
'''
def actuator_order(adj_mat):
''' given the connection information,
generate the order of the actuator
NOTE: this should be consistant with model_gen.py -> add_mujoco_actuator()
'''
N, _ = adj_mat.shape
connection_list = []
for i in range(N):
for j in range(i, N):
node_edge = '%d-%d' % (i, j)
connection_list.append(node_edge)
return connection_list
# step 1: directly adopt the relation_matrix from the current adj_matrix
connection_list = model_gen_util.dfs_order(adj_mat)
relation_matrix = np.zeros(adj_mat.shape)
relation_matrix[adj_mat > 0] = 2
# step 2: tree structure parsed from the adj_mat
tree, node_type_dict = _get_tree_struct(adj_mat, node_attr_list)
# step 3: map the input_list
input_dict, ob_size = _get_input_dict(tree, adj_mat, task_name)
# step 4: map the action_list
output_list, output_type_dict, action_size = _get_output_dict(
tree, adj_mat, gnn_output_option, task_name
)
node_param, param_size_dict = _append_node_attr(tree, adj_mat, node_attr_list)
# step 5: get the node parameters
debug_info = {'ob_size': ob_size, 'action_size': action_size}
# post_process, if using noninput_embedding
if gnn_embedding_option == 'noninput_separate':
node_param['root'] = np.reshape(np.array(0, dtype=np.int), [1, 1])
node_param['joint'] = np.reshape(
np.array(range(1, 1 + len(node_type_dict['joint'])), dtype=np.int),
[-1, 1]
)
param_size_dict = {'joint': 1, 'root': 1}
# from util import fpdb; fpdb.fpdb().set_trace()
elif gnn_embedding_option == 'noninput_shared':
assert False
node_param['root'] = np.reshape(np.array(0, dtype=np.int), [1, 1])
node_param['joint'] = np.reshape(
np.ones(len(node_type_dict['joint']), dtype=np.int),
[-1, 1]
)
param_size_dict = {'joint': 1, 'root': 1}
else:
assert gnn_embedding_option == 'parameter'
# from util import fpdb; fpdb = fpdb.fpdb(); fpdb.set_trace()
return dict(tree=tree,
relation_matrix=relation_matrix,
node_type_dict=node_type_dict,
output_type_dict=output_type_dict,
input_dict=input_dict,
output_list=output_list,
debug_info=debug_info,
node_parameters=node_param,
para_size_dict=param_size_dict,
num_nodes=len(tree)) | def gen_gnn_param(task_name,
adj_mat, node_attr_list,
gnn_node_option='nG,yB',
root_connection_option='nN, Rn, sE',
gnn_output_option='shared',
gnn_embedding_option='parameter'):
''' this function resembles the functionality of parse_mujoco_graph
in mujoco_parser.py
WARNING: this is subject to evolution fish3d environment only
which has the following features
1. the mujoco model is deterministically generated from
adj_mat and node_attr_list
2. the structure of the model follows
a. body-body connection is through 3 joints
b. the root body has 3 joints
'''
def actuator_order(adj_mat):
''' given the connection information,
generate the order of the actuator
NOTE: this should be consistant with model_gen.py -> add_mujoco_actuator()
'''
N, _ = adj_mat.shape
connection_list = []
for i in range(N):
for j in range(i, N):
node_edge = '%d-%d' % (i, j)
connection_list.append(node_edge)
return connection_list
# step 1: directly adopt the relation_matrix from the current adj_matrix
connection_list = model_gen_util.dfs_order(adj_mat)
relation_matrix = np.zeros(adj_mat.shape)
relation_matrix[adj_mat > 0] = 2
# step 2: tree structure parsed from the adj_mat
tree, node_type_dict = _get_tree_struct(adj_mat, node_attr_list)
# step 3: map the input_list
input_dict, ob_size = _get_input_dict(tree, adj_mat, task_name)
# step 4: map the action_list
output_list, output_type_dict, action_size = _get_output_dict(
tree, adj_mat, gnn_output_option, task_name
)
node_param, param_size_dict = _append_node_attr(tree, adj_mat, node_attr_list)
# step 5: get the node parameters
debug_info = {'ob_size': ob_size, 'action_size': action_size}
# post_process, if using noninput_embedding
if gnn_embedding_option == 'noninput_separate':
node_param['root'] = np.reshape(np.array(0, dtype=np.int), [1, 1])
node_param['joint'] = np.reshape(
np.array(range(1, 1 + len(node_type_dict['joint'])), dtype=np.int),
[-1, 1]
)
param_size_dict = {'joint': 1, 'root': 1}
# from util import fpdb; fpdb.fpdb().set_trace()
elif gnn_embedding_option == 'noninput_shared':
assert False
node_param['root'] = np.reshape(np.array(0, dtype=np.int), [1, 1])
node_param['joint'] = np.reshape(
np.ones(len(node_type_dict['joint']), dtype=np.int),
[-1, 1]
)
param_size_dict = {'joint': 1, 'root': 1}
else:
assert gnn_embedding_option == 'parameter'
# from util import fpdb; fpdb = fpdb.fpdb(); fpdb.set_trace()
return dict(tree=tree,
relation_matrix=relation_matrix,
node_type_dict=node_type_dict,
output_type_dict=output_type_dict,
input_dict=input_dict,
output_list=output_list,
debug_info=debug_info,
node_parameters=node_param,
para_size_dict=param_size_dict,
num_nodes=len(tree)) |
Python | def actuator_order(adj_mat):
''' given the connection information,
generate the order of the actuator
NOTE: this should be consistant with model_gen.py -> add_mujoco_actuator()
'''
N, _ = adj_mat.shape
connection_list = []
for i in range(N):
for j in range(i, N):
node_edge = '%d-%d' % (i, j)
connection_list.append(node_edge)
return connection_list | def actuator_order(adj_mat):
''' given the connection information,
generate the order of the actuator
NOTE: this should be consistant with model_gen.py -> add_mujoco_actuator()
'''
N, _ = adj_mat.shape
connection_list = []
for i in range(N):
for j in range(i, N):
node_edge = '%d-%d' % (i, j)
connection_list.append(node_edge)
return connection_list |
Python | def evo_ob_size_dict(node_info):
''' for each node type, collect the ob size
for the evolution fish environment, everything should be fixed
'''
raise NotImplementedError
node_info['ob_size_dict'] = {}
for node_type in node_info['node_type_dict']:
node_id_list = node_info['node_type_dict'][node_type]
node_ob_size = [
len(node_info['input_dict'][node_id])
for node_id in node_id_list
]
# assumes all the nodes of the same type has the same ob size
assert node_ob_size.count(node_ob_size[0]) == len(node_ob_size), \
logger.error('Nodes (type {}) have wrong ob size: {}!'.format(
node_type, node_ob_size
))
node_info['ob_size_dict'] = len(node_info['input_dict'][node_id_list[0]])
return node_info | def evo_ob_size_dict(node_info):
''' for each node type, collect the ob size
for the evolution fish environment, everything should be fixed
'''
raise NotImplementedError
node_info['ob_size_dict'] = {}
for node_type in node_info['node_type_dict']:
node_id_list = node_info['node_type_dict'][node_type]
node_ob_size = [
len(node_info['input_dict'][node_id])
for node_id in node_id_list
]
# assumes all the nodes of the same type has the same ob size
assert node_ob_size.count(node_ob_size[0]) == len(node_ob_size), \
logger.error('Nodes (type {}) have wrong ob size: {}!'.format(
node_type, node_ob_size
))
node_info['ob_size_dict'] = len(node_info['input_dict'][node_id_list[0]])
return node_info |
Python | def vectorize_ellipsoid(a, b, c, u, v):
'''
ellipsoid parameterization
use 2 angles to determine a point on the ellipsoid
return (x, y, z) coordinate of the point
'''
x = float(a * np.cos(u) * np.sin(v))
y = float(b * np.sin(u) * np.sin(v))
z = float(c * np.cos(v))
return (x, y, z) | def vectorize_ellipsoid(a, b, c, u, v):
'''
ellipsoid parameterization
use 2 angles to determine a point on the ellipsoid
return (x, y, z) coordinate of the point
'''
x = float(a * np.cos(u) * np.sin(v))
y = float(b * np.sin(u) * np.sin(v))
z = float(c * np.cos(v))
return (x, y, z) |
Python | def dfs_order(adj_mat):
'''
return the order of parent-child relationship in the tree structure
described by the adj_matrix
input:
1. adj_mat an N x N matrix in which index 0 is the root
2. the matrix is symmetric
output:
1. a list of '%d-%d's decribing the order of parent-child relationship
run using dfs
'''
def dfs_order_helper(adj_mat, node_id, cur_order):
'''
'''
# get child_list
node_row = np.copy(adj_mat[node_id])
for i in range(node_id + 1): node_row[i] = 0
child_list = np.where(node_row)[0].tolist()
for child_node in child_list:
edge = '%d-%d' % (node_id, child_node)
cur_order.append(edge)
dfs_order_helper(adj_mat, child_node, cur_order)
return cur_order
# using recursion to solve the problem
dfs_order = []
dfs_order = dfs_order_helper(adj_mat, 0, dfs_order)
return dfs_order | def dfs_order(adj_mat):
'''
return the order of parent-child relationship in the tree structure
described by the adj_matrix
input:
1. adj_mat an N x N matrix in which index 0 is the root
2. the matrix is symmetric
output:
1. a list of '%d-%d's decribing the order of parent-child relationship
run using dfs
'''
def dfs_order_helper(adj_mat, node_id, cur_order):
'''
'''
# get child_list
node_row = np.copy(adj_mat[node_id])
for i in range(node_id + 1): node_row[i] = 0
child_list = np.where(node_row)[0].tolist()
for child_node in child_list:
edge = '%d-%d' % (node_id, child_node)
cur_order.append(edge)
dfs_order_helper(adj_mat, child_node, cur_order)
return cur_order
# using recursion to solve the problem
dfs_order = []
dfs_order = dfs_order_helper(adj_mat, 0, dfs_order)
return dfs_order |
Python | def mirror_mat(mat):
''' input: 1. numpy array matrix of N x N size
output: 1. matrix of N x N size
keep the other half of the original mat
and make it symmetric along the diagonal line
'''
N, _ = mat.shape
assert N == _, 'Not a square matrix, it cannot be symmetric!'
for i in range(N):
for j in range(i, N):
mat[j, i] = mat[i, j]
return mat | def mirror_mat(mat):
''' input: 1. numpy array matrix of N x N size
output: 1. matrix of N x N size
keep the other half of the original mat
and make it symmetric along the diagonal line
'''
N, _ = mat.shape
assert N == _, 'Not a square matrix, it cannot be symmetric!'
for i in range(N):
for j in range(i, N):
mat[j, i] = mat[i, j]
return mat |
Python | def evolution_viz_config(parser):
''' configs used for drawing generation visualization
'''
# the default server is the new server (with a bigger memory)
# parser.add_argument('--vis_server', type=str, default='http://18.188.157.25')
parser.add_argument('--vis_server', type=str, default='http://13.58.242.101')
parser.add_argument('--vis_port', type=int, default=4214)
parser.add_argument('--note', type=str, default='')
parser.add_argument('--mute_info', action='store_true')
# pca coefficient for the
parser.add_argument('--pca_size_dist', action='store_true')
parser.add_argument('--pca_pc_dist', action='store_true')
parser.add_argument('--pca_range_dist', action='store_true')
# species-level stats
parser.add_argument('--body_num_line', action='store_true')
parser.add_argument('--body_size_line', action='store_true')
# plotting pca
parser.add_argument('--pca_size_eigenvalue', action='store_true')
parser.add_argument('--pca_pc_eigenvalue', action='store_true')
parser.add_argument('--size_v_dist', action='store_true')
parser.add_argument('--size_v_line', action='store_true')
return parser | def evolution_viz_config(parser):
''' configs used for drawing generation visualization
'''
# the default server is the new server (with a bigger memory)
# parser.add_argument('--vis_server', type=str, default='http://18.188.157.25')
parser.add_argument('--vis_server', type=str, default='http://13.58.242.101')
parser.add_argument('--vis_port', type=int, default=4214)
parser.add_argument('--note', type=str, default='')
parser.add_argument('--mute_info', action='store_true')
# pca coefficient for the
parser.add_argument('--pca_size_dist', action='store_true')
parser.add_argument('--pca_pc_dist', action='store_true')
parser.add_argument('--pca_range_dist', action='store_true')
# species-level stats
parser.add_argument('--body_num_line', action='store_true')
parser.add_argument('--body_size_line', action='store_true')
# plotting pca
parser.add_argument('--pca_size_eigenvalue', action='store_true')
parser.add_argument('--pca_pc_eigenvalue', action='store_true')
parser.add_argument('--size_v_dist', action='store_true')
parser.add_argument('--size_v_line', action='store_true')
return parser |
Python | def k_th_evolution(k, rank_dir, vid_dir, vid_fn='test'):
'''
read the rank_info in dir
pick the k_th performing
'''
target_vid_list = []
for fn in glob.glob(rank_dir + '/*'):
if fn.endswith('rank_info.npy') == False: continue
gen = fn.split('/')[-1].split('_')[0]
data = np.load(fn).item()
info = {}
info['gen'] = gen
info['SpcID'] = data['SpcID'][k]
info['AvgRwd'] = data['AvgRwd'][k]
target_vid_list.append( (gen, info['SpcID'], info) )
target_vid_list = sorted(target_vid_list, key=lambda x: int(x[0]))
# video handler
videoh = cv2.VideoWriter(
str(vid_fn) + '.mp4',
cv2.VideoWriter_fourcc(*'mp4v'),
40,
(width * 2, height)
)
# according to the order in target_vid_list, find the corresponding video
print('Examine the video files available')
for candidate in tqdm(target_vid_list):
gen, spcid, info = candidate
vid_text = 'Gen:%s-Spc:%d-R:%.2f' % (gen, spcid, info['AvgRwd'])
video_exist = False
for vid_file in glob.glob(vid_dir + '/*'):
if vid_file.endswith('5.mp4') == False: continue
file = vid_file.split('/')[-1]
v_gen = file.split('_')[0]
v_spc = file.split('_')[1]
if int(gen) == int(v_gen) and int(v_spc) == int(spcid):
video_exist = True
break
else: continue
if video_exist == False: continue
cap = cv2.VideoCapture(vid_file)
i = 0
while(cap.isOpened()) and i < MAX_LEN:
ret, frame = cap.read()
try:
frame = cv2.putText(frame.copy(), vid_text, (30,50),
cv2.FONT_HERSHEY_SIMPLEX, 1,
(255,255,255), 3, cv2.LINE_AA
)
except:
if frame == None:
break
i += 1
videoh.write(frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
videoh.release()
return | def k_th_evolution(k, rank_dir, vid_dir, vid_fn='test'):
'''
read the rank_info in dir
pick the k_th performing
'''
target_vid_list = []
for fn in glob.glob(rank_dir + '/*'):
if fn.endswith('rank_info.npy') == False: continue
gen = fn.split('/')[-1].split('_')[0]
data = np.load(fn).item()
info = {}
info['gen'] = gen
info['SpcID'] = data['SpcID'][k]
info['AvgRwd'] = data['AvgRwd'][k]
target_vid_list.append( (gen, info['SpcID'], info) )
target_vid_list = sorted(target_vid_list, key=lambda x: int(x[0]))
# video handler
videoh = cv2.VideoWriter(
str(vid_fn) + '.mp4',
cv2.VideoWriter_fourcc(*'mp4v'),
40,
(width * 2, height)
)
# according to the order in target_vid_list, find the corresponding video
print('Examine the video files available')
for candidate in tqdm(target_vid_list):
gen, spcid, info = candidate
vid_text = 'Gen:%s-Spc:%d-R:%.2f' % (gen, spcid, info['AvgRwd'])
video_exist = False
for vid_file in glob.glob(vid_dir + '/*'):
if vid_file.endswith('5.mp4') == False: continue
file = vid_file.split('/')[-1]
v_gen = file.split('_')[0]
v_spc = file.split('_')[1]
if int(gen) == int(v_gen) and int(v_spc) == int(spcid):
video_exist = True
break
else: continue
if video_exist == False: continue
cap = cv2.VideoCapture(vid_file)
i = 0
while(cap.isOpened()) and i < MAX_LEN:
ret, frame = cap.read()
try:
frame = cv2.putText(frame.copy(), vid_text, (30,50),
cv2.FONT_HERSHEY_SIMPLEX, 1,
(255,255,255), 3, cv2.LINE_AA
)
except:
if frame == None:
break
i += 1
videoh.write(frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
videoh.release()
return |
Python | def table_to_dataframe(table, column_levels=1, index_levels=0, collapse_empty_index_levels=True):
"""
Given a behave table, convert it to a pandas data frame using the following rules:
- valid dtypes must be specified in the table heading
- 0 or more rows can be used to label columns (a multi index will be created if column_levels > 1)
- 0 or more columns can be used to label columns (a multi index will be created if index_levels > 1)
- For tables with multi indexed columns, row index level names will be flattened to a string by default
instead of a tuple if needed, unless `collapse_empty_index_levels` is set to False.
:param table: behave.Table
:param column_levels: int
:param index_levels: int
:param collapse_empty_index_levels: bool
:return: pd.DataFrame
"""
if (not isinstance(column_levels, int)) or not (0 <= column_levels <= len(table.rows)):
raise ValueError('Invalid number of column levels requested. '
'Max valid number for this table: {}'.format(len(table.rows)))
if not isinstance(index_levels, int) or not (0 <= index_levels <= len(table.headings)):
raise ValueError('Invalid number of column levels requested. '
'Max valid number for this table: {}'.format(len(table.headings)))
dtypes = _get_dtypes(table.headings)
columns = _get_column_index(table.rows[:column_levels], len(table.headings))
data = [_convert_row_to_correct_type(row, dtypes) for row in table.rows[column_levels:]]
bycol = list(zip(*data))
if len(bycol) == 0:
bycol = [None for col in columns]
series = [
pd.Series(col_data, dtype=dtype, name=col_name) for (col_name, col_data, dtype) in
zip(columns, bycol, dtypes)
]
df = pd.concat(series, axis=1)
if index_levels > 0:
index_cols = columns[:index_levels]
df.set_index(index_cols, inplace=True)
df.index.names = _flatten_index_names_if_needed(collapse_empty_index_levels, column_levels, index_cols)
return df | def table_to_dataframe(table, column_levels=1, index_levels=0, collapse_empty_index_levels=True):
"""
Given a behave table, convert it to a pandas data frame using the following rules:
- valid dtypes must be specified in the table heading
- 0 or more rows can be used to label columns (a multi index will be created if column_levels > 1)
- 0 or more columns can be used to label columns (a multi index will be created if index_levels > 1)
- For tables with multi indexed columns, row index level names will be flattened to a string by default
instead of a tuple if needed, unless `collapse_empty_index_levels` is set to False.
:param table: behave.Table
:param column_levels: int
:param index_levels: int
:param collapse_empty_index_levels: bool
:return: pd.DataFrame
"""
if (not isinstance(column_levels, int)) or not (0 <= column_levels <= len(table.rows)):
raise ValueError('Invalid number of column levels requested. '
'Max valid number for this table: {}'.format(len(table.rows)))
if not isinstance(index_levels, int) or not (0 <= index_levels <= len(table.headings)):
raise ValueError('Invalid number of column levels requested. '
'Max valid number for this table: {}'.format(len(table.headings)))
dtypes = _get_dtypes(table.headings)
columns = _get_column_index(table.rows[:column_levels], len(table.headings))
data = [_convert_row_to_correct_type(row, dtypes) for row in table.rows[column_levels:]]
bycol = list(zip(*data))
if len(bycol) == 0:
bycol = [None for col in columns]
series = [
pd.Series(col_data, dtype=dtype, name=col_name) for (col_name, col_data, dtype) in
zip(columns, bycol, dtypes)
]
df = pd.concat(series, axis=1)
if index_levels > 0:
index_cols = columns[:index_levels]
df.set_index(index_cols, inplace=True)
df.index.names = _flatten_index_names_if_needed(collapse_empty_index_levels, column_levels, index_cols)
return df |
Python | def connection_made(self, transport: Any) -> None:
"""
Called when a connection is made.
"""
self._transport = transport | def connection_made(self, transport: Any) -> None:
"""
Called when a connection is made.
"""
self._transport = transport |
Python | def retry(times=5):
"""A decorator which retries tasks after a SystemExit exception has been
thrown. This combats the fail-fast nature of Fabric in hopes of recovering
a remote operation."""
def real_retry(func):
func.attempts = 0
func.attempts_max = times
@wraps(func)
def wrapped(*args, **kwargs):
while func.attempts < func.attempts_max:
try:
return func(*args, **kwargs)
except SystemExit:
func.attempts += 1
# If we've reached this point, blanket raise whatever exception
# brought us here.
raise
return wrapped
return real_retry | def retry(times=5):
"""A decorator which retries tasks after a SystemExit exception has been
thrown. This combats the fail-fast nature of Fabric in hopes of recovering
a remote operation."""
def real_retry(func):
func.attempts = 0
func.attempts_max = times
@wraps(func)
def wrapped(*args, **kwargs):
while func.attempts < func.attempts_max:
try:
return func(*args, **kwargs)
except SystemExit:
func.attempts += 1
# If we've reached this point, blanket raise whatever exception
# brought us here.
raise
return wrapped
return real_retry |
Python | def make_request(self, url, payload, method):
"""
Invoke url and return a python request object.
:param url:
:param payload:
:param method:
:return response (obj):
"""
if self.timeout:
return requests.request(method, url, headers=self.headers, json=payload,
timeout=self.timeout)
else:
return requests.request(method, url, headers=self.headers, json=payload) | def make_request(self, url, payload, method):
"""
Invoke url and return a python request object.
:param url:
:param payload:
:param method:
:return response (obj):
"""
if self.timeout:
return requests.request(method, url, headers=self.headers, json=payload,
timeout=self.timeout)
else:
return requests.request(method, url, headers=self.headers, json=payload) |
Python | def deactivate_subscription(self, data):
"""
Deactivate Subscription:
This method deactivates a subscription for the subscriber.
Status notification is sent to the subscriber.
:param data:
:return response:
"""
expected_keys = ["address", "productId"]
payload = process_data(expected_keys, data)
url = URL[self.env][self.version]["deactivate_subscription"]
r = self.make_request(url, payload, "POST")
if r.status_code != 200:
logger.error("Deactivate Subscription has not been completed")
response = r.json()
return response | def deactivate_subscription(self, data):
"""
Deactivate Subscription:
This method deactivates a subscription for the subscriber.
Status notification is sent to the subscriber.
:param data:
:return response:
"""
expected_keys = ["address", "productId"]
payload = process_data(expected_keys, data)
url = URL[self.env][self.version]["deactivate_subscription"]
r = self.make_request(url, payload, "POST")
if r.status_code != 200:
logger.error("Deactivate Subscription has not been completed")
response = r.json()
return response |
Python | def extract(text, restrict_xpaths=None, base_url=None):
""" Returns hyperlink.URL from given text. """
if isinstance(text, six.binary_type):
_io = six.BytesIO(text)
elif isinstance(text, (six.string_types, six.text_type)):
_io = six.StringIO(text)
else:
raise RuntimeError('Unsupported text type %s' % type(text))
doc = html.parse(_io, base_url=base_url)
return extract_from_doc(doc, restrict_xpaths) | def extract(text, restrict_xpaths=None, base_url=None):
""" Returns hyperlink.URL from given text. """
if isinstance(text, six.binary_type):
_io = six.BytesIO(text)
elif isinstance(text, (six.string_types, six.text_type)):
_io = six.StringIO(text)
else:
raise RuntimeError('Unsupported text type %s' % type(text))
doc = html.parse(_io, base_url=base_url)
return extract_from_doc(doc, restrict_xpaths) |
Python | def update(data):
"""Update the data in place to remove deprecated properties.
Args:
data (dict): dictionary to be updated
Returns:
True if data was changed, False otherwise
"""
if 'include' in data:
msg = ("included configuration files should be updated manually"
" [files={0}]")
warnings.warn(msg.format(', '.join(data['include'])))
if 'packages' in data:
return spack.schema.packages.update(data['packages'])
return False | def update(data):
"""Update the data in place to remove deprecated properties.
Args:
data (dict): dictionary to be updated
Returns:
True if data was changed, False otherwise
"""
if 'include' in data:
msg = ("included configuration files should be updated manually"
" [files={0}]")
warnings.warn(msg.format(', '.join(data['include'])))
if 'packages' in data:
return spack.schema.packages.update(data['packages'])
return False |
Python | def post_install(self):
"""Run after install to fix install name of dynamic libraries
on Darwin to have full path and install the LICENSE file."""
spec = self.spec
prefix = self.spec.prefix
if (sys.platform == 'darwin'):
fix_darwin_install_name(prefix.lib)
if spec.satisfies('@:3.0.0'):
install('LICENSE', prefix) | def post_install(self):
"""Run after install to fix install name of dynamic libraries
on Darwin to have full path and install the LICENSE file."""
spec = self.spec
prefix = self.spec.prefix
if (sys.platform == 'darwin'):
fix_darwin_install_name(prefix.lib)
if spec.satisfies('@:3.0.0'):
install('LICENSE', prefix) |
Python | def filter_compilers(self):
"""Run after install to tell the example program Makefiles
to use the compilers that Spack built the package with.
If this isn't done, they'll have CC, CPP, and F77 set to
Spack's generic cc and f77. We want them to be bound to
whatever compiler they were built with."""
spec = self.spec
kwargs = {'ignore_absent': True, 'backup': False, 'string': True}
dirname = os.path.join(self.prefix, 'examples')
cc_files = [
'arkode/C_openmp/Makefile',
'arkode/C_parallel/Makefile',
'arkode/C_parhyp/Makefile',
'arkode/C_petsc/Makefile',
'arkode/C_serial/Makefile',
'cvode/C_openmp/Makefile',
'cvode/parallel/Makefile',
'cvode/parhyp/Makefile',
'cvode/petsc/Makefile',
'cvode/serial/Makefile',
'cvodes/C_openmp/Makefile',
'cvodes/parallel/Makefile',
'cvodes/serial/Makefile',
'ida/C_openmp/Makefile',
'ida/parallel/Makefile',
'ida/petsc/Makefile',
'ida/serial/Makefile',
'idas/C_openmp/Makefile',
'idas/parallel/Makefile',
'idas/serial/Makefile',
'kinsol/C_openmp/Makefile',
'kinsol/parallel/Makefile',
'kinsol/serial/Makefile',
'nvector/C_openmp/Makefile',
'nvector/parallel/Makefile',
'nvector/parhyp/Makefile',
'nvector/petsc/Makefile',
'nvector/pthreads/Makefile',
'nvector/serial/Makefile',
'sunlinsol/band/Makefile',
'sunlinsol/dense/Makefile',
'sunlinsol/klu/Makefile',
'sunlinsol/lapackband/Makefile',
'sunlinsol/lapackdense/Makefile',
'sunlinsol/pcg/parallel/Makefile',
'sunlinsol/pcg/serial/Makefile',
'sunlinsol/spbcgs/parallel/Makefile',
'sunlinsol/spbcgs/serial/Makefile',
'sunlinsol/spfgmr/parallel/Makefile',
'sunlinsol/spfgmr/serial/Makefile',
'sunlinsol/spgmr/parallel/Makefile',
'sunlinsol/spgmr/serial/Makefile',
'sunlinsol/sptfqmr/parallel/Makefile',
'sunlinsol/sptfqmr/serial/Makefile',
'sunlinsol/superlumt/Makefile',
'sunlinsol/superludist/Makefile',
'sunmatrix/band/Makefile',
'sunmatrix/dense/Makefile',
'sunmatrix/sparse/Makefile'
]
cxx_files = [
'arkode/CXX_parallel/Makefile',
'arkode/CXX_serial/Makefile'
'cvode/cuda/Makefile',
'cvode/raja/Makefile',
'nvector/cuda/Makefile',
'nvector/raja/Makefile'
]
f77_files = [
'arkode/F77_parallel/Makefile',
'arkode/F77_serial/Makefile',
'cvode/fcmix_parallel/Makefile',
'cvode/fcmix_serial/Makefile',
'ida/fcmix_openmp/Makefile',
'ida/fcmix_parallel/Makefile',
'ida/fcmix_pthreads/Makefile',
'ida/fcmix_serial/Makefile',
'kinsol/fcmix_parallel/Makefile',
'kinsol/fcmix_serial/Makefile'
]
f90_files = [
'arkode/F90_parallel/Makefile',
'arkode/F90_serial/Makefile'
]
f2003_files = [
'arkode/F2003_serial/Makefile',
'cvode/F2003_serial/Makefile',
'cvodes/F2003_serial/Makefike',
'ida/F2003_serial/Makefile',
'idas/F2003_serial/Makefile',
'kinsol/F2003_serial/Makefile'
]
for filename in cc_files:
filter_file(os.environ['CC'], self.compiler.cc,
os.path.join(dirname, filename), **kwargs)
for filename in cc_files:
filter_file(r'^CPP\s*=.*', self.compiler.cc,
os.path.join(dirname, filename), **kwargs)
for filename in cxx_files:
filter_file(os.environ['CXX'], self.compiler.cxx,
os.path.join(dirname, filename), **kwargs)
for filename in cxx_files:
filter_file(r'^CPP\s*=.*', self.compiler.cc,
os.path.join(dirname, filename), **kwargs)
if ('+fcmix' in spec) and ('+examples' in spec):
for filename in f77_files:
filter_file(os.environ['F77'], self.compiler.f77,
os.path.join(dirname, filename), **kwargs)
if ('+fcmix' in spec) and ('+examples' in spec):
for filename in f90_files:
filter_file(os.environ['FC'], self.compiler.fc,
os.path.join(dirname, filename), **kwargs)
if ('+f2003' in spec) and ('+examples' in spec):
for filename in f2003_files:
filter_file(os.environ['FC'], self.compiler.fc,
os.path.join(dirname, filename), **kwargs) | def filter_compilers(self):
"""Run after install to tell the example program Makefiles
to use the compilers that Spack built the package with.
If this isn't done, they'll have CC, CPP, and F77 set to
Spack's generic cc and f77. We want them to be bound to
whatever compiler they were built with."""
spec = self.spec
kwargs = {'ignore_absent': True, 'backup': False, 'string': True}
dirname = os.path.join(self.prefix, 'examples')
cc_files = [
'arkode/C_openmp/Makefile',
'arkode/C_parallel/Makefile',
'arkode/C_parhyp/Makefile',
'arkode/C_petsc/Makefile',
'arkode/C_serial/Makefile',
'cvode/C_openmp/Makefile',
'cvode/parallel/Makefile',
'cvode/parhyp/Makefile',
'cvode/petsc/Makefile',
'cvode/serial/Makefile',
'cvodes/C_openmp/Makefile',
'cvodes/parallel/Makefile',
'cvodes/serial/Makefile',
'ida/C_openmp/Makefile',
'ida/parallel/Makefile',
'ida/petsc/Makefile',
'ida/serial/Makefile',
'idas/C_openmp/Makefile',
'idas/parallel/Makefile',
'idas/serial/Makefile',
'kinsol/C_openmp/Makefile',
'kinsol/parallel/Makefile',
'kinsol/serial/Makefile',
'nvector/C_openmp/Makefile',
'nvector/parallel/Makefile',
'nvector/parhyp/Makefile',
'nvector/petsc/Makefile',
'nvector/pthreads/Makefile',
'nvector/serial/Makefile',
'sunlinsol/band/Makefile',
'sunlinsol/dense/Makefile',
'sunlinsol/klu/Makefile',
'sunlinsol/lapackband/Makefile',
'sunlinsol/lapackdense/Makefile',
'sunlinsol/pcg/parallel/Makefile',
'sunlinsol/pcg/serial/Makefile',
'sunlinsol/spbcgs/parallel/Makefile',
'sunlinsol/spbcgs/serial/Makefile',
'sunlinsol/spfgmr/parallel/Makefile',
'sunlinsol/spfgmr/serial/Makefile',
'sunlinsol/spgmr/parallel/Makefile',
'sunlinsol/spgmr/serial/Makefile',
'sunlinsol/sptfqmr/parallel/Makefile',
'sunlinsol/sptfqmr/serial/Makefile',
'sunlinsol/superlumt/Makefile',
'sunlinsol/superludist/Makefile',
'sunmatrix/band/Makefile',
'sunmatrix/dense/Makefile',
'sunmatrix/sparse/Makefile'
]
cxx_files = [
'arkode/CXX_parallel/Makefile',
'arkode/CXX_serial/Makefile'
'cvode/cuda/Makefile',
'cvode/raja/Makefile',
'nvector/cuda/Makefile',
'nvector/raja/Makefile'
]
f77_files = [
'arkode/F77_parallel/Makefile',
'arkode/F77_serial/Makefile',
'cvode/fcmix_parallel/Makefile',
'cvode/fcmix_serial/Makefile',
'ida/fcmix_openmp/Makefile',
'ida/fcmix_parallel/Makefile',
'ida/fcmix_pthreads/Makefile',
'ida/fcmix_serial/Makefile',
'kinsol/fcmix_parallel/Makefile',
'kinsol/fcmix_serial/Makefile'
]
f90_files = [
'arkode/F90_parallel/Makefile',
'arkode/F90_serial/Makefile'
]
f2003_files = [
'arkode/F2003_serial/Makefile',
'cvode/F2003_serial/Makefile',
'cvodes/F2003_serial/Makefike',
'ida/F2003_serial/Makefile',
'idas/F2003_serial/Makefile',
'kinsol/F2003_serial/Makefile'
]
for filename in cc_files:
filter_file(os.environ['CC'], self.compiler.cc,
os.path.join(dirname, filename), **kwargs)
for filename in cc_files:
filter_file(r'^CPP\s*=.*', self.compiler.cc,
os.path.join(dirname, filename), **kwargs)
for filename in cxx_files:
filter_file(os.environ['CXX'], self.compiler.cxx,
os.path.join(dirname, filename), **kwargs)
for filename in cxx_files:
filter_file(r'^CPP\s*=.*', self.compiler.cc,
os.path.join(dirname, filename), **kwargs)
if ('+fcmix' in spec) and ('+examples' in spec):
for filename in f77_files:
filter_file(os.environ['F77'], self.compiler.f77,
os.path.join(dirname, filename), **kwargs)
if ('+fcmix' in spec) and ('+examples' in spec):
for filename in f90_files:
filter_file(os.environ['FC'], self.compiler.fc,
os.path.join(dirname, filename), **kwargs)
if ('+f2003' in spec) and ('+examples' in spec):
for filename in f2003_files:
filter_file(os.environ['FC'], self.compiler.fc,
os.path.join(dirname, filename), **kwargs) |
Python | def headers(self):
"""Export the headers and defines of SUNDIALS.
Sample usage: spec['sundials'].headers.cpp_flags
"""
# SUNDIALS headers are inside subdirectories, so we use a fake header
# in the include directory.
hdr = find(self.prefix.include.nvector, 'nvector_serial.h',
recursive=False)
return HeaderList(join_path(self.spec.prefix.include, 'fake.h')) \
if hdr else None | def headers(self):
"""Export the headers and defines of SUNDIALS.
Sample usage: spec['sundials'].headers.cpp_flags
"""
# SUNDIALS headers are inside subdirectories, so we use a fake header
# in the include directory.
hdr = find(self.prefix.include.nvector, 'nvector_serial.h',
recursive=False)
return HeaderList(join_path(self.spec.prefix.include, 'fake.h')) \
if hdr else None |
Python | def libs(self):
"""Export the libraries of SUNDIALS.
Sample usage: spec['sundials'].libs.ld_flags
spec['sundials:arkode,cvode'].libs.ld_flags
"""
query_parameters = self.spec.last_query.extra_parameters
if not query_parameters:
sun_libs = 'libsundials_*[!0-9]'
# Q: should the result be ordered by dependency?
else:
sun_libs = ['libsundials_' + p for p in query_parameters]
is_shared = '+shared' in self.spec
libs = find_libraries(sun_libs, root=self.prefix, shared=is_shared,
recursive=True)
return libs or None | def libs(self):
"""Export the libraries of SUNDIALS.
Sample usage: spec['sundials'].libs.ld_flags
spec['sundials:arkode,cvode'].libs.ld_flags
"""
query_parameters = self.spec.last_query.extra_parameters
if not query_parameters:
sun_libs = 'libsundials_*[!0-9]'
# Q: should the result be ordered by dependency?
else:
sun_libs = ['libsundials_' + p for p in query_parameters]
is_shared = '+shared' in self.spec
libs = find_libraries(sun_libs, root=self.prefix, shared=is_shared,
recursive=True)
return libs or None |
Python | def lookup(self, name_or_url):
"""Looks up and returns a Mirror.
If this MirrorCollection contains a named Mirror under the name
[name_or_url], then that mirror is returned. Otherwise, [name_or_url]
is assumed to be a mirror URL, and an anonymous mirror with the given
URL is returned.
"""
result = self.get(name_or_url)
if result is None:
result = Mirror(fetch_url=name_or_url)
return result | def lookup(self, name_or_url):
"""Looks up and returns a Mirror.
If this MirrorCollection contains a named Mirror under the name
[name_or_url], then that mirror is returned. Otherwise, [name_or_url]
is assumed to be a mirror URL, and an anonymous mirror with the given
URL is returned.
"""
result = self.get(name_or_url)
if result is None:
result = Mirror(fetch_url=name_or_url)
return result |
Python | def create(path, specs, skip_unstable_versions=False):
"""Create a directory to be used as a spack mirror, and fill it with
package archives.
Arguments:
path: Path to create a mirror directory hierarchy in.
specs: Any package versions matching these specs will be added \
to the mirror.
skip_unstable_versions: if true, this skips adding resources when
they do not have a stable archive checksum (as determined by
``fetch_strategy.stable_target``)
Return Value:
Returns a tuple of lists: (present, mirrored, error)
* present: Package specs that were already present.
* mirrored: Package specs that were successfully mirrored.
* error: Package specs that failed to mirror due to some error.
This routine iterates through all known package versions, and
it creates specs for those versions. If the version satisfies any spec
in the specs list, it is downloaded and added to the mirror.
"""
parsed = url_util.parse(path)
mirror_root = url_util.local_file_path(parsed)
if not mirror_root:
raise spack.error.SpackError(
'MirrorCaches only work with file:// URLs')
# automatically spec-ify anything in the specs array.
specs = [
s if isinstance(s, spack.spec.Spec) else spack.spec.Spec(s)
for s in specs]
# Get the absolute path of the root before we start jumping around.
if not os.path.isdir(mirror_root):
try:
mkdirp(mirror_root)
except OSError as e:
raise MirrorError(
"Cannot create directory '%s':" % mirror_root, str(e))
mirror_cache = spack.caches.MirrorCache(
mirror_root, skip_unstable_versions=skip_unstable_versions)
mirror_stats = MirrorStats()
# Iterate through packages and download all safe tarballs for each
for spec in specs:
mirror_stats.next_spec(spec)
_add_single_spec(spec, mirror_cache, mirror_stats)
return mirror_stats.stats() | def create(path, specs, skip_unstable_versions=False):
"""Create a directory to be used as a spack mirror, and fill it with
package archives.
Arguments:
path: Path to create a mirror directory hierarchy in.
specs: Any package versions matching these specs will be added \
to the mirror.
skip_unstable_versions: if true, this skips adding resources when
they do not have a stable archive checksum (as determined by
``fetch_strategy.stable_target``)
Return Value:
Returns a tuple of lists: (present, mirrored, error)
* present: Package specs that were already present.
* mirrored: Package specs that were successfully mirrored.
* error: Package specs that failed to mirror due to some error.
This routine iterates through all known package versions, and
it creates specs for those versions. If the version satisfies any spec
in the specs list, it is downloaded and added to the mirror.
"""
parsed = url_util.parse(path)
mirror_root = url_util.local_file_path(parsed)
if not mirror_root:
raise spack.error.SpackError(
'MirrorCaches only work with file:// URLs')
# automatically spec-ify anything in the specs array.
specs = [
s if isinstance(s, spack.spec.Spec) else spack.spec.Spec(s)
for s in specs]
# Get the absolute path of the root before we start jumping around.
if not os.path.isdir(mirror_root):
try:
mkdirp(mirror_root)
except OSError as e:
raise MirrorError(
"Cannot create directory '%s':" % mirror_root, str(e))
mirror_cache = spack.caches.MirrorCache(
mirror_root, skip_unstable_versions=skip_unstable_versions)
mirror_stats = MirrorStats()
# Iterate through packages and download all safe tarballs for each
for spec in specs:
mirror_stats.next_spec(spec)
_add_single_spec(spec, mirror_cache, mirror_stats)
return mirror_stats.stats() |
Python | def add(name, url, scope, args={}):
"""Add a named mirror in the given scope"""
mirrors = spack.config.get('mirrors', scope=scope)
if not mirrors:
mirrors = syaml_dict()
if name in mirrors:
tty.die("Mirror with name %s already exists." % name)
items = [(n, u) for n, u in mirrors.items()]
mirror_data = url
key_values = ["s3_access_key_id", "s3_access_token", "s3_profile"]
# On creation, assume connection data is set for both
if any(value for value in key_values if value in args):
url_dict = {"url": url,
"access_pair": (args.s3_access_key_id, args.s3_access_key_secret),
"access_token": args.s3_access_token,
"profile": args.s3_profile,
"endpoint_url": args.s3_endpoint_url}
mirror_data = {"fetch": url_dict, "push": url_dict}
items.insert(0, (name, mirror_data))
mirrors = syaml_dict(items)
spack.config.set('mirrors', mirrors, scope=scope) | def add(name, url, scope, args={}):
"""Add a named mirror in the given scope"""
mirrors = spack.config.get('mirrors', scope=scope)
if not mirrors:
mirrors = syaml_dict()
if name in mirrors:
tty.die("Mirror with name %s already exists." % name)
items = [(n, u) for n, u in mirrors.items()]
mirror_data = url
key_values = ["s3_access_key_id", "s3_access_token", "s3_profile"]
# On creation, assume connection data is set for both
if any(value for value in key_values if value in args):
url_dict = {"url": url,
"access_pair": (args.s3_access_key_id, args.s3_access_key_secret),
"access_token": args.s3_access_token,
"profile": args.s3_profile,
"endpoint_url": args.s3_endpoint_url}
mirror_data = {"fetch": url_dict, "push": url_dict}
items.insert(0, (name, mirror_data))
mirrors = syaml_dict(items)
spack.config.set('mirrors', mirrors, scope=scope) |
Python | def remove(name, scope):
"""Remove the named mirror in the given scope"""
mirrors = spack.config.get('mirrors', scope=scope)
if not mirrors:
mirrors = syaml_dict()
if name not in mirrors:
tty.die("No mirror with name %s" % name)
old_value = mirrors.pop(name)
spack.config.set('mirrors', mirrors, scope=scope)
debug_msg_url = "url %s"
debug_msg = ["Removed mirror %s with"]
values = [name]
try:
fetch_value = old_value['fetch']
push_value = old_value['push']
debug_msg.extend(("fetch", debug_msg_url, "and push", debug_msg_url))
values.extend((fetch_value, push_value))
except TypeError:
debug_msg.append(debug_msg_url)
values.append(old_value)
tty.debug(" ".join(debug_msg) % tuple(values))
tty.msg("Removed mirror %s." % name) | def remove(name, scope):
"""Remove the named mirror in the given scope"""
mirrors = spack.config.get('mirrors', scope=scope)
if not mirrors:
mirrors = syaml_dict()
if name not in mirrors:
tty.die("No mirror with name %s" % name)
old_value = mirrors.pop(name)
spack.config.set('mirrors', mirrors, scope=scope)
debug_msg_url = "url %s"
debug_msg = ["Removed mirror %s with"]
values = [name]
try:
fetch_value = old_value['fetch']
push_value = old_value['push']
debug_msg.extend(("fetch", debug_msg_url, "and push", debug_msg_url))
values.extend((fetch_value, push_value))
except TypeError:
debug_msg.append(debug_msg_url)
values.append(old_value)
tty.debug(" ".join(debug_msg) % tuple(values))
tty.msg("Removed mirror %s." % name) |
Python | def push_url_from_directory(output_directory):
"""Given a directory in the local filesystem, return the URL on
which to push binary packages.
"""
scheme = url_util.parse(output_directory, scheme='<missing>').scheme
if scheme != '<missing>':
raise ValueError('expected a local path, but got a URL instead')
mirror_url = 'file://' + output_directory
mirror = spack.mirror.MirrorCollection().lookup(mirror_url)
return url_util.format(mirror.push_url) | def push_url_from_directory(output_directory):
"""Given a directory in the local filesystem, return the URL on
which to push binary packages.
"""
scheme = url_util.parse(output_directory, scheme='<missing>').scheme
if scheme != '<missing>':
raise ValueError('expected a local path, but got a URL instead')
mirror_url = 'file://' + output_directory
mirror = spack.mirror.MirrorCollection().lookup(mirror_url)
return url_util.format(mirror.push_url) |
Python | def push_url_from_mirror_name(mirror_name):
"""Given a mirror name, return the URL on which to push binary packages."""
mirror = spack.mirror.MirrorCollection().lookup(mirror_name)
if mirror.name == "<unnamed>":
raise ValueError('no mirror named "{0}"'.format(mirror_name))
return url_util.format(mirror.push_url) | def push_url_from_mirror_name(mirror_name):
"""Given a mirror name, return the URL on which to push binary packages."""
mirror = spack.mirror.MirrorCollection().lookup(mirror_name)
if mirror.name == "<unnamed>":
raise ValueError('no mirror named "{0}"'.format(mirror_name))
return url_util.format(mirror.push_url) |
Python | def push_url_from_mirror_url(mirror_url):
"""Given a mirror URL, return the URL on which to push binary packages."""
scheme = url_util.parse(mirror_url, scheme='<missing>').scheme
if scheme == '<missing>':
raise ValueError('"{0}" is not a valid URL'.format(mirror_url))
mirror = spack.mirror.MirrorCollection().lookup(mirror_url)
return url_util.format(mirror.push_url) | def push_url_from_mirror_url(mirror_url):
"""Given a mirror URL, return the URL on which to push binary packages."""
scheme = url_util.parse(mirror_url, scheme='<missing>').scheme
if scheme == '<missing>':
raise ValueError('"{0}" is not a valid URL'.format(mirror_url))
mirror = spack.mirror.MirrorCollection().lookup(mirror_url)
return url_util.format(mirror.push_url) |
Python | def installed_specs():
"""
Returns the specs of packages installed in the active environment or None
if no packages are installed.
"""
env = spack.environment.active_environment()
hashes = env.all_hashes() if env else None
return spack.store.db.query(hashes=hashes) | def installed_specs():
"""
Returns the specs of packages installed in the active environment or None
if no packages are installed.
"""
env = spack.environment.active_environment()
hashes = env.all_hashes() if env else None
return spack.store.db.query(hashes=hashes) |
Python | def activate(env, use_env_repo=False):
"""Activate an environment.
To activate an environment, we add its configuration scope to the
existing Spack configuration, and we set active to the current
environment.
Arguments:
env (Environment): the environment to activate
use_env_repo (bool): use the packages exactly as they appear in the
environment's repository
"""
global _active_environment
# Fail early to avoid ending in an invalid state
if not isinstance(env, Environment):
raise TypeError("`env` should be of type {0}".format(Environment.__name__))
# Check if we need to reinitialize the store due to pushing the configuration
# below.
store_before_pushing = spack.config.get('config:install_tree')
prepare_config_scope(env)
store_after_pushing = spack.config.get('config:install_tree')
if store_before_pushing != store_after_pushing:
# Hack to store the state of the store before activation
env.store_token = spack.store.reinitialize()
if use_env_repo:
spack.repo.path.put_first(env.repo)
tty.debug("Using environment '%s'" % env.name)
# Do this last, because setting up the config must succeed first.
_active_environment = env | def activate(env, use_env_repo=False):
"""Activate an environment.
To activate an environment, we add its configuration scope to the
existing Spack configuration, and we set active to the current
environment.
Arguments:
env (Environment): the environment to activate
use_env_repo (bool): use the packages exactly as they appear in the
environment's repository
"""
global _active_environment
# Fail early to avoid ending in an invalid state
if not isinstance(env, Environment):
raise TypeError("`env` should be of type {0}".format(Environment.__name__))
# Check if we need to reinitialize the store due to pushing the configuration
# below.
store_before_pushing = spack.config.get('config:install_tree')
prepare_config_scope(env)
store_after_pushing = spack.config.get('config:install_tree')
if store_before_pushing != store_after_pushing:
# Hack to store the state of the store before activation
env.store_token = spack.store.reinitialize()
if use_env_repo:
spack.repo.path.put_first(env.repo)
tty.debug("Using environment '%s'" % env.name)
# Do this last, because setting up the config must succeed first.
_active_environment = env |
Python | def create(name, init_file=None, with_view=None, keep_relative=False):
"""Create a named environment in Spack."""
validate_env_name(name)
if exists(name):
raise SpackEnvironmentError("'%s': environment already exists" % name)
return Environment(root(name), init_file, with_view, keep_relative) | def create(name, init_file=None, with_view=None, keep_relative=False):
"""Create a named environment in Spack."""
validate_env_name(name)
if exists(name):
raise SpackEnvironmentError("'%s': environment already exists" % name)
return Environment(root(name), init_file, with_view, keep_relative) |
Python | def _read_yaml(str_or_file):
"""Read YAML from a file for round-trip parsing."""
data = syaml.load_config(str_or_file)
filename = getattr(str_or_file, 'name', None)
default_data = spack.config.validate(
data, spack.schema.env.schema, filename)
return (data, default_data) | def _read_yaml(str_or_file):
"""Read YAML from a file for round-trip parsing."""
data = syaml.load_config(str_or_file)
filename = getattr(str_or_file, 'name', None)
default_data = spack.config.validate(
data, spack.schema.env.schema, filename)
return (data, default_data) |
Python | def _write_yaml(data, str_or_file):
"""Write YAML to a file preserving comments and dict order."""
filename = getattr(str_or_file, 'name', None)
spack.config.validate(data, spack.schema.env.schema, filename)
syaml.dump_config(data, str_or_file, default_flow_style=False) | def _write_yaml(data, str_or_file):
"""Write YAML to a file preserving comments and dict order."""
filename = getattr(str_or_file, 'name', None)
spack.config.validate(data, spack.schema.env.schema, filename)
syaml.dump_config(data, str_or_file, default_flow_style=False) |
Python | def _eval_conditional(string):
"""Evaluate conditional definitions using restricted variable scope."""
valid_variables = spack.util.environment.get_host_environment()
valid_variables.update({
're': re,
'env': os.environ,
})
return eval(string, valid_variables) | def _eval_conditional(string):
"""Evaluate conditional definitions using restricted variable scope."""
valid_variables = spack.util.environment.get_host_environment()
valid_variables.update({
're': re,
'env': os.environ,
})
return eval(string, valid_variables) |
Python | def _is_dev_spec_and_has_changed(spec):
"""Check if the passed spec is a dev build and whether it has changed since the
last installation"""
# First check if this is a dev build and in the process already try to get
# the dev_path
dev_path_var = spec.variants.get('dev_path', None)
if not dev_path_var:
return False
# Now we can check whether the code changed since the last installation
if not spec.package.installed:
# Not installed -> nothing to compare against
return False
_, record = spack.store.db.query_by_spec_hash(spec.dag_hash())
mtime = fs.last_modification_time_recursive(dev_path_var.value)
return mtime > record.installation_time | def _is_dev_spec_and_has_changed(spec):
"""Check if the passed spec is a dev build and whether it has changed since the
last installation"""
# First check if this is a dev build and in the process already try to get
# the dev_path
dev_path_var = spec.variants.get('dev_path', None)
if not dev_path_var:
return False
# Now we can check whether the code changed since the last installation
if not spec.package.installed:
# Not installed -> nothing to compare against
return False
_, record = spack.store.db.query_by_spec_hash(spec.dag_hash())
mtime = fs.last_modification_time_recursive(dev_path_var.value)
return mtime > record.installation_time |
Python | def _spec_needs_overwrite(spec, changed_dev_specs):
"""Check whether the current spec needs to be overwritten because either it has
changed itself or one of its dependencies have changed"""
# if it's not installed, we don't need to overwrite it
if not spec.package.installed:
return False
# If the spec itself has changed this is a trivial decision
if spec in changed_dev_specs:
return True
# if spec and all deps aren't dev builds, we don't need to overwrite it
if not any(spec.satisfies(c)
for c in ('dev_path=*', '^dev_path=*')):
return False
# If any dep needs overwrite, or any dep is missing and is a dev build then
# overwrite this package
if any(
((not dep.package.installed) and dep.satisfies('dev_path=*')) or
_spec_needs_overwrite(dep, changed_dev_specs)
for dep in spec.traverse(root=False)
):
return True | def _spec_needs_overwrite(spec, changed_dev_specs):
"""Check whether the current spec needs to be overwritten because either it has
changed itself or one of its dependencies have changed"""
# if it's not installed, we don't need to overwrite it
if not spec.package.installed:
return False
# If the spec itself has changed this is a trivial decision
if spec in changed_dev_specs:
return True
# if spec and all deps aren't dev builds, we don't need to overwrite it
if not any(spec.satisfies(c)
for c in ('dev_path=*', '^dev_path=*')):
return False
# If any dep needs overwrite, or any dep is missing and is a dev build then
# overwrite this package
if any(
((not dep.package.installed) and dep.satisfies('dev_path=*')) or
_spec_needs_overwrite(dep, changed_dev_specs)
for dep in spec.traverse(root=False)
):
return True |
Python | def view(self, new=None):
"""
Generate the FilesystemView object for this ViewDescriptor
By default, this method returns a FilesystemView object rooted at the
current underlying root of this ViewDescriptor (self._current_root)
Raise if new is None and there is no current view
Arguments:
new (str or None): If a string, create a FilesystemView
rooted at that path. Default None. This should only be used to
regenerate the view, and cannot be used to access specs.
"""
root = self._current_root
if new:
root = new
if not root:
# This can only be hit if we write a future bug
msg = ("Attempting to get nonexistent view from environment. "
"View root is at %s" % self.root)
raise SpackEnvironmentViewError(msg)
return YamlFilesystemView(root, spack.store.layout,
ignore_conflicts=True,
projections=self.projections,
link=self.link_type) | def view(self, new=None):
"""
Generate the FilesystemView object for this ViewDescriptor
By default, this method returns a FilesystemView object rooted at the
current underlying root of this ViewDescriptor (self._current_root)
Raise if new is None and there is no current view
Arguments:
new (str or None): If a string, create a FilesystemView
rooted at that path. Default None. This should only be used to
regenerate the view, and cannot be used to access specs.
"""
root = self._current_root
if new:
root = new
if not root:
# This can only be hit if we write a future bug
msg = ("Attempting to get nonexistent view from environment. "
"View root is at %s" % self.root)
raise SpackEnvironmentViewError(msg)
return YamlFilesystemView(root, spack.store.layout,
ignore_conflicts=True,
projections=self.projections,
link=self.link_type) |
Python | def _rewrite_relative_paths_on_relocation(self, init_file_dir):
"""When initializing the environment from a manifest file and we plan
to store the environment in a different directory, we have to rewrite
relative paths to absolute ones."""
if init_file_dir == self.path:
return
for name, entry in self.dev_specs.items():
dev_path = entry['path']
expanded_path = os.path.normpath(os.path.join(
init_file_dir, entry['path']))
# Skip if the expanded path is the same (e.g. when absolute)
if dev_path == expanded_path:
continue
tty.debug("Expanding develop path for {0} to {1}".format(
name, expanded_path))
self.dev_specs[name]['path'] = expanded_path | def _rewrite_relative_paths_on_relocation(self, init_file_dir):
"""When initializing the environment from a manifest file and we plan
to store the environment in a different directory, we have to rewrite
relative paths to absolute ones."""
if init_file_dir == self.path:
return
for name, entry in self.dev_specs.items():
dev_path = entry['path']
expanded_path = os.path.normpath(os.path.join(
init_file_dir, entry['path']))
# Skip if the expanded path is the same (e.g. when absolute)
if dev_path == expanded_path:
continue
tty.debug("Expanding develop path for {0} to {1}".format(
name, expanded_path))
self.dev_specs[name]['path'] = expanded_path |
Python | def _re_read(self):
"""Reinitialize the environment object if it has been written (this
may not be true if the environment was just created in this running
instance of Spack)."""
if not os.path.exists(self.manifest_path):
return
self.clear(re_read=True)
self._read() | def _re_read(self):
"""Reinitialize the environment object if it has been written (this
may not be true if the environment was just created in this running
instance of Spack)."""
if not os.path.exists(self.manifest_path):
return
self.clear(re_read=True)
self._read() |
Python | def _read_manifest(self, f, raw_yaml=None):
"""Read manifest file and set up user specs."""
if raw_yaml:
_, self.yaml = _read_yaml(f)
self.raw_yaml, _ = _read_yaml(raw_yaml)
else:
self.raw_yaml, self.yaml = _read_yaml(f)
self.spec_lists = collections.OrderedDict()
for item in config_dict(self.yaml).get('definitions', []):
entry = copy.deepcopy(item)
when = _eval_conditional(entry.pop('when', 'True'))
assert len(entry) == 1
if when:
name, spec_list = next(iter(entry.items()))
user_specs = SpecList(name, spec_list, self.spec_lists.copy())
if name in self.spec_lists:
self.spec_lists[name].extend(user_specs)
else:
self.spec_lists[name] = user_specs
spec_list = config_dict(self.yaml).get(user_speclist_name, [])
user_specs = SpecList(user_speclist_name, [s for s in spec_list if s],
self.spec_lists.copy())
self.spec_lists[user_speclist_name] = user_specs
enable_view = config_dict(self.yaml).get('view')
# enable_view can be boolean, string, or None
if enable_view is True or enable_view is None:
self.views = {
default_view_name: ViewDescriptor(self.path,
self.view_path_default)}
elif isinstance(enable_view, six.string_types):
self.views = {default_view_name: ViewDescriptor(self.path,
enable_view)}
elif enable_view:
path = self.path
self.views = dict((name, ViewDescriptor.from_dict(path, values))
for name, values in enable_view.items())
else:
self.views = {}
# Retrieve the current concretization strategy
configuration = config_dict(self.yaml)
# default concretization to separately
self.concretization = configuration.get('concretization', 'separately')
# Retrieve dev-build packages:
self.dev_specs = configuration.get('develop', {})
for name, entry in self.dev_specs.items():
# spec must include a concrete version
assert Spec(entry['spec']).version.concrete
# default path is the spec name
if 'path' not in entry:
self.dev_specs[name]['path'] = name | def _read_manifest(self, f, raw_yaml=None):
"""Read manifest file and set up user specs."""
if raw_yaml:
_, self.yaml = _read_yaml(f)
self.raw_yaml, _ = _read_yaml(raw_yaml)
else:
self.raw_yaml, self.yaml = _read_yaml(f)
self.spec_lists = collections.OrderedDict()
for item in config_dict(self.yaml).get('definitions', []):
entry = copy.deepcopy(item)
when = _eval_conditional(entry.pop('when', 'True'))
assert len(entry) == 1
if when:
name, spec_list = next(iter(entry.items()))
user_specs = SpecList(name, spec_list, self.spec_lists.copy())
if name in self.spec_lists:
self.spec_lists[name].extend(user_specs)
else:
self.spec_lists[name] = user_specs
spec_list = config_dict(self.yaml).get(user_speclist_name, [])
user_specs = SpecList(user_speclist_name, [s for s in spec_list if s],
self.spec_lists.copy())
self.spec_lists[user_speclist_name] = user_specs
enable_view = config_dict(self.yaml).get('view')
# enable_view can be boolean, string, or None
if enable_view is True or enable_view is None:
self.views = {
default_view_name: ViewDescriptor(self.path,
self.view_path_default)}
elif isinstance(enable_view, six.string_types):
self.views = {default_view_name: ViewDescriptor(self.path,
enable_view)}
elif enable_view:
path = self.path
self.views = dict((name, ViewDescriptor.from_dict(path, values))
for name, values in enable_view.items())
else:
self.views = {}
# Retrieve the current concretization strategy
configuration = config_dict(self.yaml)
# default concretization to separately
self.concretization = configuration.get('concretization', 'separately')
# Retrieve dev-build packages:
self.dev_specs = configuration.get('develop', {})
for name, entry in self.dev_specs.items():
# spec must include a concrete version
assert Spec(entry['spec']).version.concrete
# default path is the spec name
if 'path' not in entry:
self.dev_specs[name]['path'] = name |
Python | def clear(self, re_read=False):
"""Clear the contents of the environment
Arguments:
re_read (bool): If True, do not clear ``new_specs`` nor
``new_installs`` values. These values cannot be read from
yaml, and need to be maintained when re-reading an existing
environment.
"""
self.spec_lists = {user_speclist_name: SpecList()} # specs from yaml
self.dev_specs = {} # dev-build specs from yaml
self.concretized_user_specs = [] # user specs from last concretize
self.concretized_order = [] # roots of last concretize, in order
self.specs_by_hash = {} # concretized specs by hash
self._repo = None # RepoPath for this env (memoized)
self._previous_active = None # previously active environment
if not re_read:
# things that cannot be recreated from file
self.new_specs = [] # write packages for these on write()
self.new_installs = [] # write modules for these on write() | def clear(self, re_read=False):
"""Clear the contents of the environment
Arguments:
re_read (bool): If True, do not clear ``new_specs`` nor
``new_installs`` values. These values cannot be read from
yaml, and need to be maintained when re-reading an existing
environment.
"""
self.spec_lists = {user_speclist_name: SpecList()} # specs from yaml
self.dev_specs = {} # dev-build specs from yaml
self.concretized_user_specs = [] # user specs from last concretize
self.concretized_order = [] # roots of last concretize, in order
self.specs_by_hash = {} # concretized specs by hash
self._repo = None # RepoPath for this env (memoized)
self._previous_active = None # previously active environment
if not re_read:
# things that cannot be recreated from file
self.new_specs = [] # write packages for these on write()
self.new_installs = [] # write modules for these on write() |
Python | def _transaction_lock_path(self):
"""The location of the lock file used to synchronize multiple
processes updating the same environment.
"""
return os.path.join(self.env_subdir_path, 'transaction_lock') | def _transaction_lock_path(self):
"""The location of the lock file used to synchronize multiple
processes updating the same environment.
"""
return os.path.join(self.env_subdir_path, 'transaction_lock') |
Python | def included_config_scopes(self):
"""List of included configuration scopes from the environment.
Scopes are listed in the YAML file in order from highest to
lowest precedence, so configuration from earlier scope will take
precedence over later ones.
This routine returns them in the order they should be pushed onto
the internal scope stack (so, in reverse, from lowest to highest).
"""
scopes = []
# load config scopes added via 'include:', in reverse so that
# highest-precedence scopes are last.
includes = config_dict(self.yaml).get('include', [])
missing = []
for i, config_path in enumerate(reversed(includes)):
# allow paths to contain spack config/environment variables, etc.
config_path = substitute_path_variables(config_path)
# treat relative paths as relative to the environment
if not os.path.isabs(config_path):
config_path = os.path.join(self.path, config_path)
config_path = os.path.normpath(os.path.realpath(config_path))
if os.path.isdir(config_path):
# directories are treated as regular ConfigScopes
config_name = 'env:%s:%s' % (
self.name, os.path.basename(config_path))
scope = spack.config.ConfigScope(config_name, config_path)
elif os.path.exists(config_path):
# files are assumed to be SingleFileScopes
config_name = 'env:%s:%s' % (self.name, config_path)
scope = spack.config.SingleFileScope(
config_name, config_path, spack.schema.merged.schema)
else:
missing.append(config_path)
continue
scopes.append(scope)
if missing:
msg = 'Detected {0} missing include path(s):'.format(len(missing))
msg += '\n {0}'.format('\n '.join(missing))
tty.die('{0}\nPlease correct and try again.'.format(msg))
return scopes | def included_config_scopes(self):
"""List of included configuration scopes from the environment.
Scopes are listed in the YAML file in order from highest to
lowest precedence, so configuration from earlier scope will take
precedence over later ones.
This routine returns them in the order they should be pushed onto
the internal scope stack (so, in reverse, from lowest to highest).
"""
scopes = []
# load config scopes added via 'include:', in reverse so that
# highest-precedence scopes are last.
includes = config_dict(self.yaml).get('include', [])
missing = []
for i, config_path in enumerate(reversed(includes)):
# allow paths to contain spack config/environment variables, etc.
config_path = substitute_path_variables(config_path)
# treat relative paths as relative to the environment
if not os.path.isabs(config_path):
config_path = os.path.join(self.path, config_path)
config_path = os.path.normpath(os.path.realpath(config_path))
if os.path.isdir(config_path):
# directories are treated as regular ConfigScopes
config_name = 'env:%s:%s' % (
self.name, os.path.basename(config_path))
scope = spack.config.ConfigScope(config_name, config_path)
elif os.path.exists(config_path):
# files are assumed to be SingleFileScopes
config_name = 'env:%s:%s' % (self.name, config_path)
scope = spack.config.SingleFileScope(
config_name, config_path, spack.schema.merged.schema)
else:
missing.append(config_path)
continue
scopes.append(scope)
if missing:
msg = 'Detected {0} missing include path(s):'.format(len(missing))
msg += '\n {0}'.format('\n '.join(missing))
tty.die('{0}\nPlease correct and try again.'.format(msg))
return scopes |
Python | def env_file_config_scope(self):
"""Get the configuration scope for the environment's manifest file."""
config_name = self.env_file_config_scope_name()
return spack.config.SingleFileScope(
config_name,
self.manifest_path,
spack.schema.env.schema,
[spack.config.first_existing(self.raw_yaml,
spack.schema.env.keys)]) | def env_file_config_scope(self):
"""Get the configuration scope for the environment's manifest file."""
config_name = self.env_file_config_scope_name()
return spack.config.SingleFileScope(
config_name,
self.manifest_path,
spack.schema.env.schema,
[spack.config.first_existing(self.raw_yaml,
spack.schema.env.keys)]) |
Python | def add(self, user_spec, list_name=user_speclist_name):
"""Add a single user_spec (non-concretized) to the Environment
Returns:
(bool): True if the spec was added, False if it was already
present and did not need to be added
"""
spec = Spec(user_spec)
if list_name not in self.spec_lists:
raise SpackEnvironmentError(
'No list %s exists in environment %s' % (list_name, self.name)
)
if list_name == user_speclist_name:
if not spec.name:
raise SpackEnvironmentError(
'cannot add anonymous specs to an environment!')
elif not spack.repo.path.exists(spec.name):
virtuals = spack.repo.path.provider_index.providers.keys()
if spec.name not in virtuals:
msg = 'no such package: %s' % spec.name
raise SpackEnvironmentError(msg)
list_to_change = self.spec_lists[list_name]
existing = str(spec) in list_to_change.yaml_list
if not existing:
list_to_change.add(str(spec))
self.update_stale_references(list_name)
return bool(not existing) | def add(self, user_spec, list_name=user_speclist_name):
"""Add a single user_spec (non-concretized) to the Environment
Returns:
(bool): True if the spec was added, False if it was already
present and did not need to be added
"""
spec = Spec(user_spec)
if list_name not in self.spec_lists:
raise SpackEnvironmentError(
'No list %s exists in environment %s' % (list_name, self.name)
)
if list_name == user_speclist_name:
if not spec.name:
raise SpackEnvironmentError(
'cannot add anonymous specs to an environment!')
elif not spack.repo.path.exists(spec.name):
virtuals = spack.repo.path.provider_index.providers.keys()
if spec.name not in virtuals:
msg = 'no such package: %s' % spec.name
raise SpackEnvironmentError(msg)
list_to_change = self.spec_lists[list_name]
existing = str(spec) in list_to_change.yaml_list
if not existing:
list_to_change.add(str(spec))
self.update_stale_references(list_name)
return bool(not existing) |
Python | def remove(self, query_spec, list_name=user_speclist_name, force=False):
"""Remove specs from an environment that match a query_spec"""
query_spec = Spec(query_spec)
list_to_change = self.spec_lists[list_name]
matches = []
if not query_spec.concrete:
matches = [s for s in list_to_change if s.satisfies(query_spec)]
if not matches:
# concrete specs match against concrete specs in the env
# by *dag hash*, not build hash.
dag_hashes_in_order = [
self.specs_by_hash[build_hash].dag_hash()
for build_hash in self.concretized_order
]
specs_hashes = zip(
self.concretized_user_specs, dag_hashes_in_order
)
matches = [
s for s, h in specs_hashes
if query_spec.dag_hash() == h
]
if not matches:
raise SpackEnvironmentError(
"Not found: {0}".format(query_spec))
old_specs = set(self.user_specs)
new_specs = set()
for spec in matches:
if spec in list_to_change:
try:
list_to_change.remove(spec)
self.update_stale_references(list_name)
new_specs = set(self.user_specs)
except spack.spec_list.SpecListError:
# define new specs list
new_specs = set(self.user_specs)
msg = "Spec '%s' is part of a spec matrix and " % spec
msg += "cannot be removed from list '%s'." % list_to_change
if force:
msg += " It will be removed from the concrete specs."
# Mock new specs so we can remove this spec from
# concrete spec lists
new_specs.remove(spec)
tty.warn(msg)
# If force, update stale concretized specs
for spec in old_specs - new_specs:
if force and spec in self.concretized_user_specs:
i = self.concretized_user_specs.index(spec)
del self.concretized_user_specs[i]
dag_hash = self.concretized_order[i]
del self.concretized_order[i]
del self.specs_by_hash[dag_hash] | def remove(self, query_spec, list_name=user_speclist_name, force=False):
"""Remove specs from an environment that match a query_spec"""
query_spec = Spec(query_spec)
list_to_change = self.spec_lists[list_name]
matches = []
if not query_spec.concrete:
matches = [s for s in list_to_change if s.satisfies(query_spec)]
if not matches:
# concrete specs match against concrete specs in the env
# by *dag hash*, not build hash.
dag_hashes_in_order = [
self.specs_by_hash[build_hash].dag_hash()
for build_hash in self.concretized_order
]
specs_hashes = zip(
self.concretized_user_specs, dag_hashes_in_order
)
matches = [
s for s, h in specs_hashes
if query_spec.dag_hash() == h
]
if not matches:
raise SpackEnvironmentError(
"Not found: {0}".format(query_spec))
old_specs = set(self.user_specs)
new_specs = set()
for spec in matches:
if spec in list_to_change:
try:
list_to_change.remove(spec)
self.update_stale_references(list_name)
new_specs = set(self.user_specs)
except spack.spec_list.SpecListError:
# define new specs list
new_specs = set(self.user_specs)
msg = "Spec '%s' is part of a spec matrix and " % spec
msg += "cannot be removed from list '%s'." % list_to_change
if force:
msg += " It will be removed from the concrete specs."
# Mock new specs so we can remove this spec from
# concrete spec lists
new_specs.remove(spec)
tty.warn(msg)
# If force, update stale concretized specs
for spec in old_specs - new_specs:
if force and spec in self.concretized_user_specs:
i = self.concretized_user_specs.index(spec)
del self.concretized_user_specs[i]
dag_hash = self.concretized_order[i]
del self.concretized_order[i]
del self.specs_by_hash[dag_hash] |
Python | def develop(self, spec, path, clone=False):
"""Add dev-build info for package
Args:
spec (spack.spec.Spec): Set constraints on development specs. Must include a
concrete version.
path (str): Path to find code for developer builds. Relative
paths will be resolved relative to the environment.
clone (bool): Clone the package code to the path.
If clone is False Spack will assume the code is already present
at ``path``.
Return:
(bool): True iff the environment was changed.
"""
spec = spec.copy() # defensive copy since we access cached attributes
if not spec.versions.concrete:
raise SpackEnvironmentError(
'Cannot develop spec %s without a concrete version' % spec)
for name, entry in self.dev_specs.items():
if name == spec.name:
e_spec = Spec(entry['spec'])
e_path = entry['path']
if e_spec == spec:
if path == e_path:
tty.msg("Spec %s already configured for development" %
spec)
return False
else:
tty.msg("Updating development path for spec %s" % spec)
break
else:
msg = "Updating development spec for package "
msg += "%s with path %s" % (spec.name, path)
tty.msg(msg)
break
else:
tty.msg("Configuring spec %s for development at path %s" %
(spec, path))
if clone:
# "steal" the source code via staging API
abspath = os.path.normpath(os.path.join(self.path, path))
stage = spec.package.stage
stage.steal_source(abspath)
# If it wasn't already in the list, append it
self.dev_specs[spec.name] = {'path': path, 'spec': str(spec)}
return True | def develop(self, spec, path, clone=False):
"""Add dev-build info for package
Args:
spec (spack.spec.Spec): Set constraints on development specs. Must include a
concrete version.
path (str): Path to find code for developer builds. Relative
paths will be resolved relative to the environment.
clone (bool): Clone the package code to the path.
If clone is False Spack will assume the code is already present
at ``path``.
Return:
(bool): True iff the environment was changed.
"""
spec = spec.copy() # defensive copy since we access cached attributes
if not spec.versions.concrete:
raise SpackEnvironmentError(
'Cannot develop spec %s without a concrete version' % spec)
for name, entry in self.dev_specs.items():
if name == spec.name:
e_spec = Spec(entry['spec'])
e_path = entry['path']
if e_spec == spec:
if path == e_path:
tty.msg("Spec %s already configured for development" %
spec)
return False
else:
tty.msg("Updating development path for spec %s" % spec)
break
else:
msg = "Updating development spec for package "
msg += "%s with path %s" % (spec.name, path)
tty.msg(msg)
break
else:
tty.msg("Configuring spec %s for development at path %s" %
(spec, path))
if clone:
# "steal" the source code via staging API
abspath = os.path.normpath(os.path.join(self.path, path))
stage = spec.package.stage
stage.steal_source(abspath)
# If it wasn't already in the list, append it
self.dev_specs[spec.name] = {'path': path, 'spec': str(spec)}
return True |
Python | def undevelop(self, spec):
"""Remove develop info for abstract spec ``spec``.
returns True on success, False if no entry existed."""
spec = Spec(spec) # In case it's a spec object
if spec.name in self.dev_specs:
del self.dev_specs[spec.name]
return True
return False | def undevelop(self, spec):
"""Remove develop info for abstract spec ``spec``.
returns True on success, False if no entry existed."""
spec = Spec(spec) # In case it's a spec object
if spec.name in self.dev_specs:
del self.dev_specs[spec.name]
return True
return False |
Python | def concretize(self, force=False, tests=False, reuse=False):
"""Concretize user_specs in this environment.
Only concretizes specs that haven't been concretized yet unless
force is ``True``.
This only modifies the environment in memory. ``write()`` will
write out a lockfile containing concretized specs.
Arguments:
force (bool): re-concretize ALL specs, even those that were
already concretized
tests (bool or list or set): False to run no tests, True to test
all packages, or a list of package names to run tests for some
reuse (bool): if True try to maximize reuse of already installed
specs, if False don't account for installation status.
Returns:
List of specs that have been concretized. Each entry is a tuple of
the user spec and the corresponding concretized spec.
"""
if force:
# Clear previously concretized specs
self.concretized_user_specs = []
self.concretized_order = []
self.specs_by_hash = {}
# Pick the right concretization strategy
if self.concretization == 'together':
return self._concretize_together(tests=tests, reuse=reuse)
if self.concretization == 'separately':
return self._concretize_separately(tests=tests, reuse=reuse)
msg = 'concretization strategy not implemented [{0}]'
raise SpackEnvironmentError(msg.format(self.concretization)) | def concretize(self, force=False, tests=False, reuse=False):
"""Concretize user_specs in this environment.
Only concretizes specs that haven't been concretized yet unless
force is ``True``.
This only modifies the environment in memory. ``write()`` will
write out a lockfile containing concretized specs.
Arguments:
force (bool): re-concretize ALL specs, even those that were
already concretized
tests (bool or list or set): False to run no tests, True to test
all packages, or a list of package names to run tests for some
reuse (bool): if True try to maximize reuse of already installed
specs, if False don't account for installation status.
Returns:
List of specs that have been concretized. Each entry is a tuple of
the user spec and the corresponding concretized spec.
"""
if force:
# Clear previously concretized specs
self.concretized_user_specs = []
self.concretized_order = []
self.specs_by_hash = {}
# Pick the right concretization strategy
if self.concretization == 'together':
return self._concretize_together(tests=tests, reuse=reuse)
if self.concretization == 'separately':
return self._concretize_separately(tests=tests, reuse=reuse)
msg = 'concretization strategy not implemented [{0}]'
raise SpackEnvironmentError(msg.format(self.concretization)) |
Python | def _concretize_together(self, tests=False, reuse=False):
"""Concretization strategy that concretizes all the specs
in the same DAG.
"""
# Exit early if the set of concretized specs is the set of user specs
user_specs_did_not_change = not bool(
set(self.user_specs) - set(self.concretized_user_specs)
)
if user_specs_did_not_change:
return []
# Check that user specs don't have duplicate packages
counter = collections.defaultdict(int)
for user_spec in self.user_specs:
counter[user_spec.name] += 1
duplicates = []
for name, count in counter.items():
if count > 1:
duplicates.append(name)
if duplicates:
msg = ('environment that are configured to concretize specs'
' together cannot contain more than one spec for each'
' package [{0}]'.format(', '.join(duplicates)))
raise SpackEnvironmentError(msg)
# Proceed with concretization
self.concretized_user_specs = []
self.concretized_order = []
self.specs_by_hash = {}
concrete_specs = spack.concretize.concretize_specs_together(
*self.user_specs, tests=tests, reuse=reuse
)
concretized_specs = [x for x in zip(self.user_specs, concrete_specs)]
for abstract, concrete in concretized_specs:
self._add_concrete_spec(abstract, concrete)
return concretized_specs | def _concretize_together(self, tests=False, reuse=False):
"""Concretization strategy that concretizes all the specs
in the same DAG.
"""
# Exit early if the set of concretized specs is the set of user specs
user_specs_did_not_change = not bool(
set(self.user_specs) - set(self.concretized_user_specs)
)
if user_specs_did_not_change:
return []
# Check that user specs don't have duplicate packages
counter = collections.defaultdict(int)
for user_spec in self.user_specs:
counter[user_spec.name] += 1
duplicates = []
for name, count in counter.items():
if count > 1:
duplicates.append(name)
if duplicates:
msg = ('environment that are configured to concretize specs'
' together cannot contain more than one spec for each'
' package [{0}]'.format(', '.join(duplicates)))
raise SpackEnvironmentError(msg)
# Proceed with concretization
self.concretized_user_specs = []
self.concretized_order = []
self.specs_by_hash = {}
concrete_specs = spack.concretize.concretize_specs_together(
*self.user_specs, tests=tests, reuse=reuse
)
concretized_specs = [x for x in zip(self.user_specs, concrete_specs)]
for abstract, concrete in concretized_specs:
self._add_concrete_spec(abstract, concrete)
return concretized_specs |
Python | def _concretize_separately(self, tests=False, reuse=False):
"""Concretization strategy that concretizes separately one
user spec after the other.
"""
# keep any concretized specs whose user specs are still in the manifest
old_concretized_user_specs = self.concretized_user_specs
old_concretized_order = self.concretized_order
old_specs_by_hash = self.specs_by_hash
self.concretized_user_specs = []
self.concretized_order = []
self.specs_by_hash = {}
for s, h in zip(old_concretized_user_specs, old_concretized_order):
if s in self.user_specs:
concrete = old_specs_by_hash[h]
self._add_concrete_spec(s, concrete, new=False)
# Concretize any new user specs that we haven't concretized yet
arguments, root_specs = [], []
for uspec, uspec_constraints in zip(
self.user_specs, self.user_specs.specs_as_constraints
):
if uspec not in old_concretized_user_specs:
root_specs.append(uspec)
arguments.append((uspec_constraints, tests, reuse))
# Ensure we don't try to bootstrap clingo in parallel
if spack.config.get('config:concretizer') == 'clingo':
with spack.bootstrap.ensure_bootstrap_configuration():
spack.bootstrap.ensure_clingo_importable_or_raise()
# Ensure all the indexes have been built or updated, since
# otherwise the processes in the pool may timeout on waiting
# for a write lock. We do this indirectly by retrieving the
# provider index, which should in turn trigger the update of
# all the indexes if there's any need for that.
_ = spack.repo.path.provider_index
# Ensure we have compilers in compilers.yaml to avoid that
# processes try to write the config file in parallel
_ = spack.compilers.get_compiler_config()
# Early return if there is nothing to do
if len(arguments) == 0:
return []
# Solve the environment in parallel on Linux
start = time.time()
max_processes = min(
len(arguments), # Number of specs
16 # Cap on 16 cores
)
# TODO: revisit this print as soon as darwin is parallel too
msg = 'Starting concretization'
if sys.platform != 'darwin':
pool_size = spack.util.parallel.num_processes(max_processes=max_processes)
if pool_size > 1:
msg = msg + ' pool with {0} processes'.format(pool_size)
tty.msg(msg)
concretized_root_specs = spack.util.parallel.parallel_map(
_concretize_task, arguments, max_processes=max_processes,
debug=tty.is_debug()
)
finish = time.time()
tty.msg('Environment concretized in %.2f seconds.' % (finish - start))
results = []
for abstract, concrete in zip(root_specs, concretized_root_specs):
self._add_concrete_spec(abstract, concrete)
results.append((abstract, concrete))
return results | def _concretize_separately(self, tests=False, reuse=False):
"""Concretization strategy that concretizes separately one
user spec after the other.
"""
# keep any concretized specs whose user specs are still in the manifest
old_concretized_user_specs = self.concretized_user_specs
old_concretized_order = self.concretized_order
old_specs_by_hash = self.specs_by_hash
self.concretized_user_specs = []
self.concretized_order = []
self.specs_by_hash = {}
for s, h in zip(old_concretized_user_specs, old_concretized_order):
if s in self.user_specs:
concrete = old_specs_by_hash[h]
self._add_concrete_spec(s, concrete, new=False)
# Concretize any new user specs that we haven't concretized yet
arguments, root_specs = [], []
for uspec, uspec_constraints in zip(
self.user_specs, self.user_specs.specs_as_constraints
):
if uspec not in old_concretized_user_specs:
root_specs.append(uspec)
arguments.append((uspec_constraints, tests, reuse))
# Ensure we don't try to bootstrap clingo in parallel
if spack.config.get('config:concretizer') == 'clingo':
with spack.bootstrap.ensure_bootstrap_configuration():
spack.bootstrap.ensure_clingo_importable_or_raise()
# Ensure all the indexes have been built or updated, since
# otherwise the processes in the pool may timeout on waiting
# for a write lock. We do this indirectly by retrieving the
# provider index, which should in turn trigger the update of
# all the indexes if there's any need for that.
_ = spack.repo.path.provider_index
# Ensure we have compilers in compilers.yaml to avoid that
# processes try to write the config file in parallel
_ = spack.compilers.get_compiler_config()
# Early return if there is nothing to do
if len(arguments) == 0:
return []
# Solve the environment in parallel on Linux
start = time.time()
max_processes = min(
len(arguments), # Number of specs
16 # Cap on 16 cores
)
# TODO: revisit this print as soon as darwin is parallel too
msg = 'Starting concretization'
if sys.platform != 'darwin':
pool_size = spack.util.parallel.num_processes(max_processes=max_processes)
if pool_size > 1:
msg = msg + ' pool with {0} processes'.format(pool_size)
tty.msg(msg)
concretized_root_specs = spack.util.parallel.parallel_map(
_concretize_task, arguments, max_processes=max_processes,
debug=tty.is_debug()
)
finish = time.time()
tty.msg('Environment concretized in %.2f seconds.' % (finish - start))
results = []
for abstract, concrete in zip(root_specs, concretized_root_specs):
self._add_concrete_spec(abstract, concrete)
results.append((abstract, concrete))
return results |
Python | def concretize_and_add(self, user_spec, concrete_spec=None, tests=False):
"""Concretize and add a single spec to the environment.
Concretize the provided ``user_spec`` and add it along with the
concretized result to the environment. If the given ``user_spec`` was
already present in the environment, this does not add a duplicate.
The concretized spec will be added unless the ``user_spec`` was
already present and an associated concrete spec was already present.
Args:
concrete_spec: if provided, then it is assumed that it is the
result of concretizing the provided ``user_spec``
"""
if self.concretization == 'together':
msg = 'cannot install a single spec in an environment that is ' \
'configured to be concretized together. Run instead:\n\n' \
' $ spack add <spec>\n' \
' $ spack install\n'
raise SpackEnvironmentError(msg)
spec = Spec(user_spec)
if self.add(spec):
concrete = concrete_spec or spec.concretized(tests=tests)
self._add_concrete_spec(spec, concrete)
else:
# spec might be in the user_specs, but not installed.
# TODO: Redo name-based comparison for old style envs
spec = next(
s for s in self.user_specs if s.satisfies(user_spec)
)
concrete = self.specs_by_hash.get(spec.build_hash())
if not concrete:
concrete = spec.concretized(tests=tests)
self._add_concrete_spec(spec, concrete)
return concrete | def concretize_and_add(self, user_spec, concrete_spec=None, tests=False):
"""Concretize and add a single spec to the environment.
Concretize the provided ``user_spec`` and add it along with the
concretized result to the environment. If the given ``user_spec`` was
already present in the environment, this does not add a duplicate.
The concretized spec will be added unless the ``user_spec`` was
already present and an associated concrete spec was already present.
Args:
concrete_spec: if provided, then it is assumed that it is the
result of concretizing the provided ``user_spec``
"""
if self.concretization == 'together':
msg = 'cannot install a single spec in an environment that is ' \
'configured to be concretized together. Run instead:\n\n' \
' $ spack add <spec>\n' \
' $ spack install\n'
raise SpackEnvironmentError(msg)
spec = Spec(user_spec)
if self.add(spec):
concrete = concrete_spec or spec.concretized(tests=tests)
self._add_concrete_spec(spec, concrete)
else:
# spec might be in the user_specs, but not installed.
# TODO: Redo name-based comparison for old style envs
spec = next(
s for s in self.user_specs if s.satisfies(user_spec)
)
concrete = self.specs_by_hash.get(spec.build_hash())
if not concrete:
concrete = spec.concretized(tests=tests)
self._add_concrete_spec(spec, concrete)
return concrete |
Subsets and Splits