import matplotlib.pyplot as plt from scipy import signal from scipy.io import wavfile import os import wavio import numpy as np import wave from scipy.io.wavfile import read as read_wav import pylab from numpy.lib import stride_tricks """ NOTE: While a lot of this was self authored (lines 60-89), the spectrogram images I was producing were just not the correct colors. I couldn't find a way to make the contrast between the noise caught by the microphone and the background more visible. The code between lines 16-30, 32-57, and 91-112 was made following this stack overflow post https://stackoverflow.com/questions/44787437/how-to-convert-a-wav-file-to-a-spectrogram-in-python3. All it really is the template for the graph and the correct coloring for it. The actual accesing of the files, processing of the wav data, and saving of the images was all pretty simple itself.""" #short time fourier transform of audio signal def stft(sig, frameSize, overlapFac=0.5, window=np.hanning, hopFactor=1): win = np.hamming(frameSize) + 1e-10 hopSize = int(frameSize - np.floor(overlapFac * frameSize)) * hopFactor # zeros at beginning (thus center of 1st window should be for sample nr. 0) samples = np.append(np.zeros(int(np.floor(frameSize/2.0))), sig) # cols for windowing cols = np.ceil( (len(samples) - frameSize) / float(hopSize)) + 1 # zeros at end (thus samples can be fully covered by frames) samples = np.append(samples, np.zeros(frameSize)) frames = stride_tricks.as_strided(samples, shape=(int(cols), frameSize), strides=(samples.strides[0]*hopSize, samples.strides[0])).copy() frames *= win return np.fft.rfft(frames) def logscale_spec(spec, sr=44100, factor=20.): timebins, freqbins = np.shape(spec) scale = np.linspace(0, 1, freqbins) ** factor scale *= (freqbins-1)/max(scale) scale = np.unique(np.round(scale)) # create spectrogram with new freq bins newspec = np.complex128(np.zeros([timebins, len(scale)])) for i in range(0, len(scale)): if i == len(scale)-1: newspec[:,i] = np.sum(spec[:,int(scale[i]):], axis=1) else: newspec[:,i] = np.sum(spec[:,int(scale[i]):int(scale[i+1])], axis=1) # list center freq of bins allfreqs = np.abs(np.fft.fftfreq(freqbins*2, 1./sr)[:freqbins+1]) freqs = [] for i in range(0, len(scale)): if i == len(scale)-1: freqs += [np.mean(allfreqs[int(scale[i]):])] else: freqs += [np.mean(allfreqs[int(scale[i]):int(scale[i+1])])] return newspec, freqs folders = ["Pipistrellus pygmaus with social sound", "Noctula nyctalus with noise", "Pipistrellus pygmaus wo social sound", "Noctula nyctalus with out social sound and noise"] folders1 = ["test"] folders1 = ["Noctula nyctalus with out social sound and noise"] def wavToSpectro(folders): for folder in folders: for fN in os.listdir(f"/Users/elijahmendoza/OCS_Materials/Neural_Networks/NeuralNetworksProject/{folder}/to crop"): #print(fN) fileName = fN[:-4] if ".wav" in fN: fileToImport = f"/Users/elijahmendoza/OCS_Materials/Neural_Networks/NeuralNetworksProject/{folder}/to crop/{fileName}.wav" pngName = f"/Users/elijahmendoza/OCS_Materials/Neural_Networks/NeuralNetworksProject/{folder}/Bar Spectrograms/{fileName}" samp_rate, samp = wavfile.read(fileToImport) # our samp is 5_000_000 (for a given clip) # our samp rate is 500_000 (for a given clip) # if we divide our samp/samp_rate then we get the length of our clip (in this case 10) # adjust sample rate frequencies, times, spectrogram = signal.spectrogram(samp, samp_rate) binsize = 2**10 colormap = "jet" #hopfactor Max: 15 #hopfactor min: ? s = stft(samp, binsize, hopFactor=2) sshow, freq = logscale_spec(s, factor=1, sr=samp_rate) ims = 20. * np.log10(np.where(np.abs(sshow) < 1e-10, 1e-10, np.abs(sshow))) # amplitude to decibel timebins, freqbins = np.shape(ims) plt.figure(figsize=(3.0, 2.0), dpi=100) plt.imshow(np.transpose(ims), origin="lower", aspect="auto", cmap=colormap, interpolation="bilinear") #plt.colorbar() plt.axis('off') # Turn off axis plt.margins(0, 0) # Set margins to zero #plt.gca().set_aspect('equal') #plt.xlabel("time (s)") #plt.ylabel("frequency (hz)") plt.xlim([0, timebins-1]) plt.ylim([3, 250]) #xlocs = np.float32(np.linspace(0, timebins-1, 5)) #plt.xticks(xlocs, ["%.02f" % l for l in ((xlocs*len(samp)/timebins)+(0.5*binsize))/samp_rate]) #ylocs = np.int16(np.round(np.linspace(0, freqbins-1, 10))) #plt.yticks(ylocs, ["%.02f" % freq[i] for i in ylocs]) plt.savefig(pngName, bbox_inches="tight", pad_inches=0.0) plt.clf() plt.close() wavToSpectro(folders)