from transformers import AlbertTokenizer, AlbertForSequenceClassification from datasets import load_dataset from transformers import Trainer, TrainingArguments # Load dataset (ganti dengan nama dataset dan versi kamu) dataset = load_dataset('your_username/your_dataset_name', 'your_dataset_version') # Load tokenizer and model tokenizer = AlbertTokenizer.from_pretrained('google/albert-base-v2') model = AlbertForSequenceClassification.from_pretrained('google/albert-base-v2') # Define preprocessing function def preprocess_function(examples): return tokenizer(examples['text'], truncation=True, padding='max_length') # Preprocess dataset encoded_dataset = dataset.map(preprocess_function, batched=True) # Define training arguments training_args = TrainingArguments( output_dir='./results', per_device_train_batch_size=8, num_train_epochs=3, evaluation_strategy="epoch", save_strategy="epoch", ) # Create trainer trainer = Trainer( model=model, args=training_args, train_dataset=encoded_dataset['train'], eval_dataset=encoded_dataset['validation'], ) # Train model trainer.train() # Save trained model trainer.save_model('./your_private_albert_model')