# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Survey Variable Identification (SV-Ident) Corpus.""" import csv import random import datasets # TODO: Add BibTeX citation _CITATION = """\ @misc{sv-ident, author={vadis-project}, title={SV-Ident}, year={2022}, url={https://github.com/vadis-project/sv-ident}, } """ _DESCRIPTION = """\ The SV-Ident corpus (version 0.3) is a collection of 4,248 expert-annotated English and German sentences from social science publications, supporting the task of multi-label text classification. """ _HOMEPAGE = "https://github.com/vadis-project/sv-ident" # TODO: Add the licence # _LICENSE = "" _URL = "https://raw.githubusercontent.com/vadis-project/sv-ident/a8e71bba570f628c460e2b542d4cc645e4eb7d03/data/train/" _URLS = { "train": _URL+"train.tsv", "dev": _URL+"val.tsv", # "trial": "https://github.com/vadis-project/sv-ident/tree/9962c3274444ce84c59d42e2a6f8c0958ed15a26/data/trial", } class SVIdent(datasets.GeneratorBasedBuilder): """Survey Variable Identification (SV-Ident) Corpus.""" VERSION = datasets.Version("0.3.0") def _info(self): features = datasets.Features( { "sentence": datasets.Value("string"), "is_variable": datasets.ClassLabel(names=["0", "1"]), "variable": datasets.Sequence(datasets.Value(dtype="string")), "research_data": datasets.Sequence(datasets.Value(dtype="string")), "doc_id": datasets.Value("string"), "uuid": datasets.Value("string"), "lang": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=("sentence", "is_variable"), homepage=_HOMEPAGE, # license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_files = dl_manager.download(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": downloaded_files["train"], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": downloaded_files["dev"], "split": "dev", }, ) ] def _generate_examples(self, filepath): """Yields examples.""" data = [] with open(filepath, newline="", encoding="utf-8") as csvfile: reader = csv.reader(csvfile, delimiter="\t") next(reader, None) # skip the headers for row in reader: data.append(row) seed = 42 random.seed(seed) random.shuffle(data) for id_, example in enumerate(data): sentence = example[0] is_variable = example[1] variable = example[2] if example[2] != "" else [] if variable: variable = variable.split(";") if ";" in variable else [variable] research_data = example[3] if example[3] != "" else [] if research_data: research_data = research_data.split(";") if ";" in research_data else [research_data] doc_id = example[4] uuid = example[5] lang = example[6] yield id_, { "sentence": sentence, "is_variable": is_variable, "variable": variable, "research_data": research_data, "doc_id": doc_id, "uuid": uuid, "lang": lang, }