# Source: https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py import csv import json import os import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {Boat dataset}, author={XXX, Inc.}, year={2024} } """ _DESCRIPTION = """\ This dataset is designed to solve an object detection task with images of boats. """ _HOMEPAGE = "https://huggingface.co/datasets/uwwee/Boat_dataset/resolve/main" _LICENSE = "" _URLS = { # "classes": f"{_HOMEPAGE}/data/classes.txt", "train": f"{_HOMEPAGE}/data/instances_train2023r.jsonl", "val": f"{_HOMEPAGE}/data/instances_val2023r.jsonl", } class BoatDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="Boat_dataset", version=VERSION, description="Dataset for detecting boats in aerial images."), ] DEFAULT_CONFIG_NAME = "Boat_dataset" # Provide a default configuration def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ 'image_id': datasets.Value('int32'), 'image_path': datasets.Value('string'), 'width': datasets.Value('int32'), 'height': datasets.Value('int32'), 'objects': datasets.Features({ 'id': datasets.Sequence(datasets.Value('int32')), 'area': datasets.Sequence(datasets.Value('float32')), 'bbox': datasets.Sequence(datasets.Sequence(datasets.Value('float32'), length=4)), # [x, y, width, height] 'category': datasets.Sequence(datasets.Value('int32')) }), }), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): # Download all files and extract them downloaded_files = dl_manager.download_and_extract(_URLS) # Load class labels from the classes file with open('classes.txt', 'r') as file: classes = [line.strip() for line in file.readlines()] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "annotations_file": downloaded_files["train"], "classes": classes, "split": "train", } ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "annotations_file": downloaded_files["val"], "classes": classes, "split": "val", } ), ] def _generate_examples(self, annotations_file, classes, split): # Process annotations with open(annotations_file, encoding="utf-8") as f: for key, row in enumerate(f): try: data = json.loads(row.strip()) yield key, { "image_id": data["image_id"], "image_path": data["image_path"], "width": data["width"], "height": data["height"], "objects": data["objects"], } except json.JSONDecodeError: print(f"Skipping invalid JSON at line {key + 1}: {row}") continue