--- viewer: false tags: - uv-script - training - unsloth - streaming - fine-tuning - llm --- # Streaming LLM Training with Unsloth Train on massive datasets without downloading anything - data streams directly from the Hub. ## 🦥 Latin LLM Example Teaches Qwen Latin using 1.47M texts from FineWeb-2, streamed directly from the Hub. **Blog post:** [Train on Massive Datasets Without Downloading](https://danielvanstrien.xyz/posts/2026/hf-streaming-unsloth/train-massive-datasets-without-downloading.html) ### Quick Start ```bash # Run on HF Jobs (recommended - 2x faster streaming) hf jobs uv run latin-llm-streaming.py \ --flavor a100-large \ --timeout 2h \ --secrets HF_TOKEN \ -- \ --max-steps 500 \ --output-repo your-username/qwen-latin # Run locally uv run latin-llm-streaming.py \ --max-steps 100 \ --output-repo your-username/qwen-latin-test ``` ### Why Streaming? - **No disk space needed** - train on TB-scale datasets without downloading - **Works everywhere** - Colab, Kaggle, HF Jobs - **Any language** - FineWeb-2 has 90+ languages available ### Options | Argument | Default | Description | |----------|---------|-------------| | `--base-model` | `unsloth/Qwen3-0.6B-Base-unsloth-bnb-4bit` | Base model | | `--max-steps` | 500 | Training steps | | `--batch-size` | 4 | Per-device batch size | | `--gradient-accumulation` | 4 | Gradient accumulation steps | | `--learning-rate` | 2e-4 | Learning rate | | `--output-repo` | Required | Where to push model | | `--wandb-project` | None | Wandb project for logging | ### Performance | Environment | Speed | Why | |-------------|-------|-----| | Colab A100 | ~0.36 it/s | Network latency | | HF Jobs A100 | ~0.74 it/s | Co-located compute | Streaming is ~2x faster on HF Jobs because compute is co-located with the data. --- ## 🚀 Running on HF Jobs ```bash # Basic usage hf jobs uv run latin-llm-streaming.py --flavor a100-large --secrets HF_TOKEN # With timeout for long training hf jobs uv run latin-llm-streaming.py --flavor a100-large --timeout 2h --secrets HF_TOKEN # Pass script arguments after -- hf jobs uv run latin-llm-streaming.py --flavor a100-large -- --max-steps 1000 --batch-size 8 ``` ### Available Flavors - `a100-large` - 80GB VRAM (recommended) - `a10g-large` - 24GB VRAM - `t4-small` - 16GB VRAM --- ## 🔗 Resources - [Unsloth](https://github.com/unslothai/unsloth) - 2x faster training - [HF Jobs Docs](https://huggingface.co/docs/huggingface_hub/guides/jobs) - [Datasets Streaming](https://huggingface.co/docs/datasets/stream) - [Streaming Datasets Blog](https://huggingface.co/blog/streaming-datasets) --- Made with 🦥 [Unsloth](https://github.com/unslothai/unsloth)