File size: 5,524 Bytes
73b8544 4c8e23b dea2aaf 26344b5 4c8e23b dea2aaf 26344b5 73b8544 e89f235 7602a53 596a864 659f658 323aa7e f90fe51 e89f235 b2fb11c b7af2b4 f90fe51 b2fb11c 748d1cc 7bcf2bd 748d1cc 3dde2f1 748d1cc b2fb11c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
license: openrail++
dataset_info:
features:
- name: text
dtype: string
- name: tags
dtype: float64
splits:
- name: train
num_bytes: 2105604
num_examples: 12682
- name: validation
num_bytes: 705759
num_examples: 4227
- name: test
num_bytes: 710408
num_examples: 4214
download_size: 2073133
dataset_size: 3521771
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
## Ukrainian Toxicity Dataset (Semi-natural)
This is the first of its kind toxicity classification dataset for the Ukrainian language. The datasets was obtained semi-automatically by toxic keywords filtering. For manually collected datasets with crowdsourcing, please, check [textdetox/multilingual_toxicity_dataset](https://huggingface.co/datasets/textdetox/multilingual_toxicity_dataset).
Due to the subjective nature of toxicity, definitions of toxic language will vary. We include items that are commonly referred to as vulgar or profane language. ([NLLB paper](https://arxiv.org/pdf/2207.04672.pdf))
## Dataset formation:
1. Filtering Ukrainian tweets so that only tweets containing toxic language remain with toxic keywords. Source data: https://github.com/saganoren/ukr-twi-corpus
2. Non-toxic sentences were obtained from a previous dataset of tweets as well as sentences from news and fiction from UD Ukrainian IU: https://universaldependencies.org/treebanks/uk_iu/index.html
3. After that, the dataset was split into a train-test-val and all data were balanced both by the toxic/non-toxic criterion and by data source.
Labels: 0 - non-toxic, 1 - toxic.
## Load dataset:
```
from datasets import load_dataset
dataset = load_dataset("ukr-detect/ukr-toxicity-dataset")
```
## Citation
```
@inproceedings{dementieva-etal-2025-cross,
title = "Cross-lingual Text Classification Transfer: The Case of {U}krainian",
author = "Dementieva, Daryna and
Khylenko, Valeriia and
Groh, Georg",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.97/",
pages = "1451--1464",
abstract = "Despite the extensive amount of labeled datasets in the NLP text classification field, the persistent imbalance in data availability across various languages remains evident. To support further fair development of NLP models, exploring the possibilities of effective knowledge transfer to new languages is crucial. Ukrainian, in particular, stands as a language that still can benefit from the continued refinement of cross-lingual methodologies. Due to our knowledge, there is a tremendous lack of Ukrainian corpora for typical text classification tasks, i.e., different types of style, or harmful speech, or texts relationships. However, the amount of resources required for such corpora collection from scratch is understandable. In this work, we leverage the state-of-the-art advances in NLP, exploring cross-lingual knowledge transfer methods avoiding manual data curation: large multilingual encoders and translation systems, LLMs, and language adapters. We test the approaches on three text classification tasks{---}toxicity classification, formality classification, and natural language inference (NLI){---}providing the {\textquotedblleft}recipe{\textquotedblright} for the optimal setups for each task."
}
```
and
```
@inproceedings{dementieva-etal-2024-toxicity,
title = "Toxicity Classification in {U}krainian",
author = "Dementieva, Daryna and
Khylenko, Valeriia and
Babakov, Nikolay and
Groh, Georg",
editor = {Chung, Yi-Ling and
Talat, Zeerak and
Nozza, Debora and
Plaza-del-Arco, Flor Miriam and
R{\"o}ttger, Paul and
Mostafazadeh Davani, Aida and
Calabrese, Agostina},
booktitle = "Proceedings of the 8th Workshop on Online Abuse and Harms (WOAH 2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.woah-1.19",
doi = "10.18653/v1/2024.woah-1.19",
pages = "244--255",
abstract = "The task of toxicity detection is still a relevant task, especially in the context of safe and fair LMs development. Nevertheless, labeled binary toxicity classification corpora are not available for all languages, which is understandable given the resource-intensive nature of the annotation process. Ukrainian, in particular, is among the languages lacking such resources. To our knowledge, there has been no existing toxicity classification corpus in Ukrainian. In this study, we aim to fill this gap by investigating cross-lingual knowledge transfer techniques and creating labeled corpora by: (i){\textasciitilde}translating from an English corpus, (ii){\textasciitilde}filtering toxic samples using keywords, and (iii){\textasciitilde}annotating with crowdsourcing. We compare LLMs prompting and other cross-lingual transfer approaches with and without fine-tuning offering insights into the most robust and efficient baselines.",
}
``` |