--- dataset_info: features: - name: dataset dtype: string - name: condition dtype: string - name: trial dtype: string - name: n_objects dtype: int64 - name: oddity_index dtype: int64 - name: images sequence: image - name: n_subjects dtype: int64 - name: human_avg dtype: float64 - name: human_sem dtype: float64 - name: human_std dtype: float64 - name: RT_avg dtype: float64 - name: RT_sem dtype: float64 - name: RT_std dtype: float64 - name: DINOv2G_avg dtype: float64 - name: DINOv2G_std dtype: float64 - name: DINOv2G_sem dtype: float64 splits: - name: train num_bytes: 384413356.563 num_examples: 2019 download_size: 382548893 dataset_size: 384413356.563 configs: - config_name: default data_files: - split: train path: data/train-* --- ## MOCHI: Multiview Object Consistency in Humans and Image models We introduce a benchmark to evaluate the alignment between humans and image models on 3D shape understanding: **M**ultiview **O**bject **C**onsistency in **H**umans and **I**mage models (**MOCHI**) To download dataset from huggingface, install relevant huggingface libraries ``` pip install datasets huggingface_hub ``` and download MOCHI ```python from datasets import load_dataset # download huggingface dataset benchmark = load_dataset("tzler/MOCHI")['train'] # there are 2019 trials let's pick one i_trial = benchmark[1879] ``` Here, `i_trial` is a dictionary with trial-related data including human (`human` and `RT`) and model (`DINOv2G`) performance measures: ``` {'dataset': 'shapegen', 'condition': 'abstract2', 'trial': 'shapegen2527', 'n_objects': 3, 'oddity_index': 2, 'images': [, , ], 'n_subjects': 15, 'human_avg': 1.0, 'human_sem': 0.0, 'human_std': 0.0, 'RT_avg': 4324.733333333334, 'RT_sem': 544.4202024405384, 'RT_std': 2108.530377391076, 'DINOv2G_avg': 1.0, 'DINOv2G_std': 0.0, 'DINOv2G_sem': 0.0}``` ``` as well as this trial's images: ```python plt.figure(figsize=[15,4]) for i_plot in range(len(i_trial['images'])): plt.subplot(1,len(i_trial['images']),i_plot+1) plt.imshow(i_trial['images'][i_plot]) if i_plot == i_trial['oddity_index']: plt.title('odd-one-out') plt.axis('off') plt.show() ``` example trial The complete results on this benchmark, including all of the human and model (e.g., DINOv2, CLIP, and MAE at multiple sizes), can be downloaded from the github repo: ``` git clone https://github.com/tzler/MOCHI.git ``` And then imported with a few lines of code: ```python import pandas # load data the github repo we just cloned df = pandas.read_csv('MOCHI/assets/benchmark.csv') # extract trial info with the index from huggingface repo above df.loc[i_trial_index]['trial'] ``` This returns the trial, `shapegen2527`, which is the same as the huggingface dataset for this index. ``` @misc{bonnen2024evaluatingmultiviewobjectconsistency, title={Evaluating Multiview Object Consistency in Humans and Image Models}, author={Tyler Bonnen and Stephanie Fu and Yutong Bai and Thomas O'Connell and Yoni Friedman and Nancy Kanwisher and Joshua B. Tenenbaum and Alexei A. Efros}, year={2024}, eprint={2409.05862}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2409.05862}, } ```