--- dataset_info: features: - name: dataset dtype: string - name: condition dtype: string - name: trial dtype: string - name: n_objects dtype: int64 - name: oddity_index dtype: int64 - name: images sequence: image - name: n_subjects dtype: int64 - name: human_avg dtype: float64 - name: human_sem dtype: float64 - name: human_std dtype: float64 - name: RT_avg dtype: float64 - name: RT_sem dtype: float64 - name: RT_std dtype: float64 - name: DINOv2G_avg dtype: float64 - name: DINOv2G_std dtype: float64 - name: DINOv2G_sem dtype: float64 splits: - name: train num_bytes: 384413356.563 num_examples: 2019 download_size: 382548893 dataset_size: 384413356.563 configs: - config_name: default data_files: - split: train path: data/train-* --- ## MOCHI: Multiview Object Consistency in Humans and Image models We introduce **MOCHI** (Multiview Obect Consistency in Humans and Image models), a benchmark to evaluate the alignment between humans and image models on 3D shape understanding. To download dataset from huggingface, install relevant huggingface libraries ``` pip install datasets huggingface_hub ``` and download MOCHI ```python from datasets import load_dataset # download huggingface dataset benchmark = load_dataset("tzler/MOCHI")['train'] # there are 2019 trials let's pick one i_trial = benchmark[1879] ``` Here, `i_trial` is a dictionary with trial-related data including human (`human` and `RT`) and model (`DINOv2G`) performance measures: ``` {'dataset': 'shapegen', 'condition': 'abstract2', 'trial': 'shapegen2527', 'n_objects': 3, 'oddity_index': 2, 'images': [, , ], 'n_subjects': 15, 'human_avg': 1.0, 'human_sem': 0.0, 'human_std': 0.0, 'RT_avg': 4324.733333333334, 'RT_sem': 544.4202024405384, 'RT_std': 2108.530377391076, 'DINOv2G_avg': 1.0, 'DINOv2G_std': 0.0, 'DINOv2G_sem': 0.0}``` ``` as well as this trial's images: ```python plt.figure(figsize=[15,4]) for i_plot in range(len(i_trial['images'])): plt.subplot(1,len(i_trial['images']),i_plot+1) plt.imshow(i_trial['images'][i_plot]) if i_plot == i_trial['oddity_index']: plt.title('odd-one-out') plt.axis('off') plt.show() ``` example trial