# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Ascent KB: A Deep Commonsense Knowledge Base""" import json import datasets _CITATION = """\ @InProceedings{nguyen2021www, title={Advanced Semantics for Commonsense Knowledge Extraction}, author={Nguyen, Tuan-Phong and Razniewski, Simon and Weikum, Gerhard}, year={2021}, booktitle={The Web Conference 2021}, } """ _DESCRIPTION = """\ This dataset contains 8.9M commonsense assertions extracted by the Ascent pipeline (https://ascent.mpi-inf.mpg.de/). """ _HOMEPAGE = "https://ascent.mpi-inf.mpg.de/" _LICENSE = "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/" # The HuggingFace dataset library don't host the datasets but only point to the original files # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URL = "https://nextcloud.mpi-klsb.mpg.de/index.php/s/dFLdTQHqiFrt3Q3/download" # DONE: Name of the dataset usually match the script name with CamelCase instead of snake_case class AscentKB(datasets.GeneratorBasedBuilder): """Ascent KB: A Deep Commonsense Knowledge Base. Version 1.0.0.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="canonical", version=VERSION, description="This KB contains \ assertions where relations are canonicalized based on ConceptNet relations.", ), datasets.BuilderConfig( name="open", version=VERSION, description="This KB contains open assertions of the form \ extracted directly from web contents.", ), ] DEFAULT_CONFIG_NAME = "canonical" def _info(self): if self.config.name == "canonical": features = datasets.Features( { "arg1": datasets.Value("string"), "rel": datasets.Value("string"), "arg2": datasets.Value("string"), "support": datasets.Value("int64"), "facets": [ { "value": datasets.Value("string"), "type": datasets.Value("string"), "support": datasets.Value("int64"), } ], "source_sentences": [{"text": datasets.Value("string"), "source": datasets.Value("string")}], } ) else: # features for the "open" part features = datasets.Features( { "subject": datasets.Value("string"), "predicate": datasets.Value("string"), "object": datasets.Value("string"), "support": datasets.Value("int64"), "facets": [ { "value": datasets.Value("string"), "type": datasets.Value("string"), "support": datasets.Value("int64"), } ], "source_sentences": [{"text": datasets.Value("string"), "source": datasets.Value("string")}], } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # my_urls = _URLs[self.config.name] # data_file = dl_manager.download_and_extract(my_urls) data_file = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_file, "split": "train", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): """Yields examples as (key, example) tuples.""" # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is here for legacy reason (tfds) and is not important in itself. with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) if self.config.name == "canonical": data.pop("subject") data.pop("predicate") data.pop("object") yield id_, data else: # "open" data.pop("arg1") data.pop("rel") data.pop("arg2") yield id_, data