# -------------------------------------------- import keyring as kr import os import random import json import re import sys import time from collections import defaultdict from functools import reduce import codefast as cf import joblib import numpy as np import pandas as pd from rich import print from typing import List, Union, Callable, Set, Dict, Tuple, Optional, Any from pydantic import BaseModel import asyncio import aiohttp import aioredis from codefast.patterns.pipeline import Pipeline, BeeMaxin # —-------------------------------------------- from datasets import load_dataset class DataLoader(BeeMaxin): def __init__(self) -> None: super().__init__() def process(self): files = [] for f in cf.io.walk('jsons/'): files.append(f) return files class ToCsv(BeeMaxin): def to_csv(self, json_file: str): texts, labels = [], [] with open(json_file, 'r') as f: for line in f: line = json.loads(line) texts.append(line['text']) _label = ' '.join(line['labels']) labels.append(_label) task_name = cf.io.basename(json_file).replace('.json', '') return pd.DataFrame({'text': texts, 'labels': labels, 'task_name': task_name}) def process(self, files: List[str]): """ Merge all ner data into a train.csv """ df = pd.DataFrame() for f in files: cf.info({ 'message': f'processing {f}' }) newdf = self.to_csv(f) df = pd.concat([df, newdf], axis=0) df.to_csv('train.csv', index=False) df.sample(10).to_csv('dev.csv', index=False) if __name__ == '__main__': pl = Pipeline( [ ('dloader', DataLoader()), ('csv converter', ToCsv()) ] ) pl.gather()