--- language: - en license: - other multilinguality: - monolingual size_categories: - 1k<10K task_categories: - token-classification task_ids: - named-entity-recognition pretty_name: TweetNER7 --- # Dataset Card for "tner/tweetner7" ## Dataset Description - **Repository:** [https://github.com/asahi417/tweetner7](https://github.com/asahi417/tweetner7) - **Paper:** TBA - **Dataset:** TweetNER7 - **Domain:** Twitter - **Number of Entity:** 7 ### Dataset Summary This is an official of TweetNER7 ("Named Entity Recognition in Twitter: A Dataset and Analysis on Short-Term Temporal Shifts, AACL main conference 2022"), an NER dataset on Twitter with 7 entity labels. Each instance of TweetNER7 comes with a timestamp which distributes from September 2019 to August 2021. - Entity Types: `corperation`, `creative_work`, `event`, `group`, `location`, `product`, `person` ***PREPROCESSING:*** We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`. For verified usernames, we replace its display name with symbols `{@}`. For example, a tweet ``` Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek ``` is transformed into the following text. ``` Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from {@Herbie Hancock@} via {{USERNAME}} link below: {{URL}} ``` We ask annotators to ignore those special tokens but label the verified users' mentions. ## Dataset Structure ### Data Instances An example of `train` looks as follows. ``` { 'tokens': ['Morning', '5km', 'run', 'with', '{{USERNAME}}', 'for', 'breast', 'cancer', 'awareness', '#', 'pinkoctober', '#', 'breastcancerawareness', '#', 'zalorafit', '#', 'zalorafitxbnwrc', '@', 'The', 'Central', 'Park', ',', 'Desa', 'Parkcity', '{{URL}}'], 'tags': [14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 2, 14, 2, 14, 14, 14, 14, 14, 14, 4, 11, 11, 11, 11, 14], 'id': '1183344337016381440', 'date': '2019-10-13' } ``` ### Label ID The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweetner7/raw/main/dataset/label.json). ```python { "B-corporation": 0, "B-creative_work": 1, "B-event": 2, "B-group": 3, "B-location": 4, "B-person": 5, "B-product": 6, "I-corporation": 7, "I-creative_work": 8, "I-event": 9, "I-group": 10, "I-location": 11, "I-person": 12, "I-product": 13, "O": 14 } ``` ### Data Splits | name |train|validation|test|train_2020|validation_2020|test_2020|train_2021|validation_2021|test_2021|extra_2020|extra_2021| |----------|----:|---------:|---:|---------:|--------------:|--------:|---------:|--------------:|--------:|---------:|---------:| |tweetner7 | 4616| 576 |2807|4616 | 576 | 576 | 2495 | 310 | 2807 | 87880 | 93594 | ### Citation Information ``` @inproceedings{ushio-etal-2022-tweet, title = "{N}amed {E}ntity {R}ecognition in {T}witter: {A} {D}ataset and {A}nalysis on {S}hort-{T}erm {T}emporal {S}hifts", author = "Ushio, Asahi and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco. and Camacho-Collados, Jose", booktitle = "The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing", month = nov, year = "2022", address = "Online", publisher = "Association for Computational Linguistics", } ```