--- language: - en license: - other multilinguality: - monolingual size_categories: - 1k<10K task_categories: - token-classification task_ids: - named-entity-recognition pretty_name: TweetNER7 --- # Dataset Card for "tner/tweetner7" ## Dataset Description - **Repository:** [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper) - **Paper:** TBA - **Dataset:** TweetNER7 - **Domain:** Twitter - **Number of Entity:** 7 ### Dataset Summary This is an official of TweetNER7 ("Named Entity Recognition in Twitter: A Dataset and Analysis on Short-Term Temporal Shifts, AACL main conference 2022"), an NER dataset on Twitter with 7 entity labels. Each instance of TweetNER7 comes with a timestamp which distributes from September 2019 to August 2021. - Entity Types: `corperation`, `creative_work`, `event`, `group`, `location`, `product`, `person` ### Preprocessing We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`. For verified usernames, we replace its display name (or account name) with symbols `{@}`. For example, a tweet ``` Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek ``` is transformed into the following text. ``` Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}} ``` A simple function to format tweet follows below. ```python import re from urlextract import URLExtract extractor = URLExtract() def format_tweet(tweet): # mask web urls urls = extractor.find_urls(tweet) for url in urls: tweet = tweet.replace(url, "{{URL}}") # format twitter account tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet) return tweet target = """Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek""" target_format = format_tweet(target) print(target_format) 'Get the all-analog Classic Vinyl Edition of "Takin\' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}' ``` We ask annotators to ignore those special tokens but label the verified users' mentions. ### Data Split | split | number of instances | description | |:------------------|------:|------:| | train_2020 | 4616 | training dataset from September 2019 to August 2020 | | train_2021 | 2495 | training dataset from September 2020 to August 2021 | | train_all | 7111 | combined training dataset of `train_2020` and `train_2021` | | validation_2020 | 576 | validation dataset from September 2019 to August 2020 | | validation_2021 | 310 | validation dataset from September 2020 to August 2021 | | validation_all | 886 | combined validation dataset of `validation_2020` and `validation_2021` | | test_2020 | 576 | test dataset from September 2019 to August 2020 | | test_2021 | 2807 | test dataset from September 2020 to August 2021 | | test_all | 3383 | combined test dataset of `test_2020` and `test_2021` | | train_random | 4616 | randomly sampled training dataset with the same size as `train_2020` from `train_all` | | validation_random | 576 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` | | extra_2020 | 87880 | extra tweet without annotations from September 2019 to August 2020 | | extra_2021 | 93594 | extra tweet without annotations from September 2020 to August 2021 | ### Reproduce Experimental Result To reproduce the experimental result on our AACL paper, please see the repository [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper). ## Dataset Structure ### Data Instances An example of `train` looks as follows. ``` { 'tokens': ['Morning', '5km', 'run', 'with', '{{USERNAME}}', 'for', 'breast', 'cancer', 'awareness', '#', 'pinkoctober', '#', 'breastcancerawareness', '#', 'zalorafit', '#', 'zalorafitxbnwrc', '@', 'The', 'Central', 'Park', ',', 'Desa', 'Parkcity', '{{URL}}'], 'tags': [14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 2, 14, 2, 14, 14, 14, 14, 14, 14, 4, 11, 11, 11, 11, 14], 'id': '1183344337016381440', 'date': '2019-10-13' } ``` ### Label ID The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweetner7/raw/main/dataset/label.json). ```python { "B-corporation": 0, "B-creative_work": 1, "B-event": 2, "B-group": 3, "B-location": 4, "B-person": 5, "B-product": 6, "I-corporation": 7, "I-creative_work": 8, "I-event": 9, "I-group": 10, "I-location": 11, "I-person": 12, "I-product": 13, "O": 14 } ``` ### Citation Information ``` @inproceedings{ushio-etal-2022-tweet, title = "{N}amed {E}ntity {R}ecognition in {T}witter: {A} {D}ataset and {A}nalysis on {S}hort-{T}erm {T}emporal {S}hifts", author = "Ushio, Asahi and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco. and Camacho-Collados, Jose", booktitle = "The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing", month = nov, year = "2022", address = "Online", publisher = "Association for Computational Linguistics", } ```