""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """ import json from itertools import chain import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """[MultiNERD](https://aclanthology.org/2022.findings-naacl.60/)""" _NAME = "multinerd" _VERSION = "1.0.0" _CITATION = """ @inproceedings{tedeschi-navigli-2022-multinerd, title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)", author = "Tedeschi, Simone and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-naacl.60", doi = "10.18653/v1/2022.findings-naacl.60", pages = "801--812", abstract = "Named Entity Recognition (NER) is the task of identifying named entities in texts and classifying them through specific semantic categories, a process which is crucial for a wide range of NLP applications. Current datasets for NER focus mainly on coarse-grained entity types, tend to consider a single textual genre and to cover a narrow set of languages, thus limiting the general applicability of NER systems.In this work, we design a new methodology for automatically producing NER annotations, and address the aforementioned limitations by introducing a novel dataset that covers 10 languages, 15 NER categories and 2 textual genres.We also introduce a manually-annotated test set, and extensively evaluate the quality of our novel dataset on both this new test set and standard benchmarks for NER.In addition, in our dataset, we include: i) disambiguation information to enable the development of multilingual entity linking systems, and ii) image URLs to encourage the creation of multimodal systems.We release our dataset at https://github.com/Babelscape/multinerd.", } """ _HOME_PAGE = "https://github.com/asahi417/tner" _URL = f'https://huggingface.co/datasets/tner/{_NAME}/resolve/main/dataset' _LANGUAGE = ['de', 'en', 'es', 'fr', 'it', 'nl', 'pl', 'pt', 'ru'] _URLS = { l: { str(datasets.Split.TEST): [f'{_URL}/{l}.jsonl'], } for l in _LANGUAGE } class MultiNERDConfig(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(MultiNERDConfig, self).__init__(**kwargs) class MultiNERD(datasets.GeneratorBasedBuilder): """Dataset.""" BUILDER_CONFIGS = [ MultiNERDConfig(name=l, version=datasets.Version(_VERSION), description=f"{_DESCRIPTION} (language: {l})") for l in _LANGUAGE ] def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name]) return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]}) for i in [datasets.Split.TEST]] def _generate_examples(self, filepaths): _key = 0 for filepath in filepaths: logger.info(f"generating examples from = {filepath}") with open(filepath, encoding="utf-8") as f: _list = [i for i in f.read().split('\n') if len(i) > 0] for i in _list: data = json.loads(i) yield _key, data _key += 1 def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "tags": datasets.Sequence(datasets.Value("int32")), } ), supervised_keys=None, homepage=_HOME_PAGE, citation=_CITATION, )