--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': AnnualCrop '1': Forest '2': HerbaceousVegetation '3': Highway '4': Industrial '5': Pasture '6': PermanentCrop '7': Residential '8': River '9': SeaLake - name: image_id dtype: string splits: - name: train num_bytes: 55332279.0 num_examples: 16200 - name: validation num_bytes: 18472972.2 num_examples: 5400 - name: test num_bytes: 18625106.4 num_examples: 5400 download_size: 92078756 dataset_size: 92430357.6 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # EuroSat (RGB) ## Description A dataset based on Sentinel-2 satellite images covering 13 spectral bands and consisting of 10 classes with 27000 labeled and geo-referenced samples. This is the RGB version of the dataset with visible bands encoded as JPEG images. The dataset does not have any default splits. Train, validation, and test splits were based on these definitions here https://github.com/google-research/google-research/blob/master/remote_sensing_representations/README.md#dataset-splits * Website: https://github.com/phelber/eurosat * Paper: https://arxiv.org/abs/1709.00029 ## Citation ```bibtext @article{helber2019eurosat, title={Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification}, author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian}, journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, year={2019}, publisher={IEEE} } ```