import json import numpy as np import os from tqdm import tqdm import subprocess from glob import glob import argparse import time from utils import crop_video, crop_face, write_video, crop_and_save_audio from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed import sys ''' Crop the untrimmed videos into multiple clips using corresponding start and end times, bounding boxes and face landmarks. Usage: python crop_videos.py --video_dir /path/to/25-fps-videos --save_path /path/to/save/the/clips --json /path/to/json/file To save videos using ffmpeg, add "--use_ffmpeg True". This takes additional time but saves disk space. To additionally save audio as separate wav files, add "--save_audio True" To merge audio with video and save as a single mp4, add "--merge_audio True" ''' def write_clip(metadata, vid_p, args): ''' param metadata: dict containing start, end, bounding boxes, landmarks param vid_p: path to original untrimmed video at 25fps param args: main args ''' for k, clip in enumerate(metadata): # get the clip frames and corresponding landmarks video, landmarks = crop_video(vid_p, clip) # get the cropped sequence around the mouth using the landmarks crop_seq = crop_face(video, landmarks) save_video_path = os.path.join(args.save_path, 'videos', vid_p.split('/')[-1][:-4], f'{str(k).zfill(5)}.mp4') save_audio_path = save_video_path.replace('.mp4','.wav') # get the audio part of the clip if args.save_audio or args.merge_audio: crop_and_save_audio(vid_p, save_audio_path, clip['start'], clip['end']) # write clip to disk write_video(save_video_path, crop_seq, save_audio_path, merge_audio=args.merge_audio, use_ffmpeg=args.use_ffmpeg) return def main(args): savepath = args.save_path json_path = args.json vid_dir = args.video_dir video_list = glob(os.path.join(vid_dir, '25_fps_videos*', '*.mp4')) print(f'Loading json file {json_path}') data = json.load(open(json_path,'r')) print(f'Total number of videos {len(video_list)}. Json length {len(data)}') video_ids = list(data.keys()) count_clips = 0 futures = [] writer_str = 'Ffmpeg' if args.use_ffmpeg else 'cv2.VideoWriter' print(f'Using {writer_str} to save the cropped clips.') with tqdm(total=len(video_ids), file=sys.stdout) as progress: with ProcessPoolExecutor() as executor: for z in video_ids: idx = [k for k, i in enumerate(video_list) if z in i] metadata = data[z] vid_p = video_list[idx[0]] os.makedirs(os.path.join(savepath, 'videos', vid_p.split('/')[-1][:-4]), exist_ok=True) future = executor.submit(write_clip, metadata, vid_p, args) futures.append(future) for _ in as_completed(futures): progress.update() print(f'Cropping videos completed.') print(f'Getting the labels.') labels = {} for z in tqdm(video_ids): metadata = data[z] for k, clip in enumerate(metadata): labk = clip['label'] fi = os.path.join('videos', vid_p.split('/')[-1][:-4], f'{str(k).zfill(5)}.mp4') labels[fi] = labk label_file = f'{args.save_path}/labels.json' with open(label_file, 'w', encoding='utf-8') as f: json.dump(labels, f) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Vhisper crop videos') parser.add_argument('--save_path', type=str, default='', help='Path for saving.') parser.add_argument('--json', type=str, default='', help='Json path') parser.add_argument('--video_dir', type=str, default='', help='Path to directory where original videos are stored.') parser.add_argument('--save_audio', type=bool, default=False, help='Whether to save audio info.') parser.add_argument('--merge_audio', type=bool, default=False, help='Whether to merge audio with the video when saving.') parser.add_argument('--use_ffmpeg', type=bool, default=False, help='Whether to use ffmpeg instead of cv2 for saving the video.') args = parser.parse_args() tic = time.time() main(args) print(f'Elpased total time for processing: {time.time()-tic} seconds')