import os from pathlib import Path import datasets from typing import List STYLE, CLASSIFIER = "style", "classifier" _CITATION = """\ @inproceedings{style_transfer_acl18, title={Style Transfer Through Back-Translation}, author={Prabhumoye, Shrimai and Tsvetkov, Yulia and Salakhutdinov, Ruslan and Black, Alan W}, year={2018}, booktitle={Proc. ACL} } """ _DESCRIPTION = """\ Political slant transfer dataset. Contains two classes of political tweets between Democratic and Republican Politicans. This dataset can be used for classification tasks. """ _HOMEPAGE = "https://github.com/shrimai/Style-Transfer-Through-Back-Translation" _LICENSE = "" # could not find. class PoliticalDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DEFAULT_CONFIG_NAME = STYLE BUILDER_CONFIGS = [ datasets.BuilderConfig( name=STYLE, version=VERSION, description="Political Tweets Dataset, used for Style Transfer tasks.", ), datasets.BuilderConfig( name=CLASSIFIER, version=VERSION, description="Political Tweets Dataset, Used for classification tasks.", ), ] def _info(self): features = datasets.Features( { "text": datasets.Value("string"), "label": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=("text", "label"), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: data_dir = "political_data" splits: List[datasets.SplitGenerator] = [] if self.config.name == STYLE: splits.append( datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepaths": [ os.path.join(data_dir, "republican_only.train.en"), os.path.join(data_dir, "democratic_only.train.en"), ], "split": "train", }, ) ) else: splits.append( datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepaths": [os.path.join(data_dir, "classtrain.txt")], "split": "train", }, ) ) splits += [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepaths": [ os.path.join(data_dir, "republican_only.dev.en"), os.path.join(data_dir, "democratic_only.dev.en"), ], "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepaths": [ os.path.join(data_dir, "republican_only.test.en"), os.path.join(data_dir, "democratic_only.test.en"), ], "split": "test", }, ), ] return splits def _generate_examples(self, filepaths: List[str], split: str): for filepath in filepaths: filename = Path(filepath).name label = filename.split(".")[0].split("_")[0] with open(filepath, encoding="utf-8") as f: for key, row in enumerate(f): text = row.strip() if split != "test": # label only exists in train/eval files. text = text.split() label, text = text[0], text[1:] text = " ".join(text) yield ( key, {"text": text, "label": label}, ) if __name__ == "__main__": from tqdm import tqdm dataset = PoliticalDataset(config_name="classifier") dataset = dataset.as_streaming_dataset() print(dataset) for row in tqdm(dataset["train"]): row["text"] = "hello"