32

Some O-0 techniques for
graphical interactive applications

Famous Designer has recently designed an automdbites neither a
fuel gauge nor a speedometenor any of the idiot controls that plague
other modern carsinstead if the driver makes a mistaka large*?”
lights up in the middle of the dashboat@he experienced drivérsays
Famous“will usually know what went wrofig

Unix folklore. (Instead of Famous Designér the
original names one of the principal contributors to Unix.)

E legant user interfaces have become a required part of any successful software produ
Advances in display hardware, ergonomics (the study of human factors) and softwatr
have taken advantage of interaction techniques first pioneered in the seventies: multip
windows so you can work on several jobs, mouse or other fast-moving device so you ce
show what you want, menus to speed up your choices, icons to represent importa
notions, figures to display information visually, buttons to request common operations.

The acronym GUI, for Graphical User Interfaces, has come to serve as a gener
slogan for this style of interaction. Related buzzwords include WY SIWWBat You See
Is What You G¢t WIMP (“Windows, Icons, Menus, Pointing device”) and the phrase
“direct manipulation”, characterizing applications which give their users the impression
that they work directly on the objects shown on the screen.

These impressive techniques, not long ago accessible only to users of a fe
advanced systems running on expensive hardware, have now become almo
commonplace even on the most ordinary personal computers. So commonplace al
popular, in fact, that a software developer can hardly expect any success from a prodt
that uses just a line-oriented interface, or even one that is full-screen but not graphical.

Yet until recently the construction of interactive applications offering advanced
graphical facilities remained so difficult as to justify what may be calledrtezface
Conjecture the more convenient and easy an application appears to its users, the hardel
will be for its developers to build.

One of the admirable advances of the software field over the past few years has be
to startdisproving the interface conjecture through the appearance of good tools such a
interface builders.

1064 SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATION:§32.1

More progress remains necessary in this fast-moving area. Object technology can
help tremendously, and in fact the fields denoted by the two buzzwords, GUI and O-O,
have had a closely linked history. Simply stated, the purpose of this chapter is to disprove
the Interface Conjecture, by showing that to be user-friendly an application does not have
to be developer-hostile. Object-oriented techniques will help us concentrate on the proper
data abstractions, suggest some of these abstractions, and give us the ability to reuse
everything that can be reused.

A complete exploration of O-O techniques for building graphical and interactive
applications would take a book of its own. The aim of the present chapter is much more
modest. It will simply select a few of the less obvious aspects of GUI building, and
introduce a few fundamental techniques that you should find widely applicable if your
work involves designing graphical systems.

32.1 NEEDED TOOLS

What tools do we need for building useful and pleasant interactive applications?

End users, application developers and tool developers

First, a point of terminology to avoid any confusion. The word “user” (one of the most
abused terms in the computer field) is potentially misleading here. Certain people, called
application developer, will produce interactive applications to be used by other people,
to be callecend users; a typical end user would be a dentist’s assistant, using a system
built by some application developer for recording and accessing patient history. The
application developers themselves will rely, for their graphical needs, on tools built by the
third group,tool developer. The presence of three categories is the reason why “user”
without further qualification is ambiguous: the end users are the application developers’
users; but the application developers themselves are the tool developers’ users.

An application is an interactive system produced by a developer. An end user who
uses an application will do so by starting a session, exercising the application’s various
facilities by providing the input of his choice. Sessions are to applications what objects are
to classes: individual instances of a general pattern.

This chapter analyzes the requirements of developers who want to provide their end
users with useful applications offering graphical interfaces.

Graphical systems, window systems, toolkits

Many computing platforms offer some tools for building graphical interactive
applications. For the graphical part, libraries are available to implement designs such as
GKS and PHIGS. For the user interface part, basic window systems (such as the Windows
Application Programming Inteate, the Xlib APl under Unix and the Presentation
Manager API under OS/2) are too low-level to make direct use convenient for application
developers, but they are complemented by “toolkits”, such as those based on the Motif
user interface protocol.

§32.1 NEEDED TOOLS 1065

All these systems fulfil useful needs, but they do not suffice to satisfy developer
requirements. Among their limitations:

» They remain hard to use. With Motif-based toolkits, developers must master a mul
volume documentation describing hundreds of predefined C functions and structul
bearing such awe-inspiring namesXmPushButtonCallbackStri — with theB of
Buttor in upper-case, but thk of back in lower-case — oXmNsubMenul. The
difficulties and insecurities of C are compounded by the complexity of the toolkit
Using the basic Application Programming Interface of Windowsnidarly tedious:
to create an application, you must write the application’s main loop to get and dispat
messages, a window procedure to catch user events, and other low-level element:

« Although the toolkits cover user interface objects — buttons, menus and the like -
some of them offer little on graphics (geometrical figures and transformations). To a
true graphics to the interface is a significant effort.

e The toolkits are incompatible with each other. Motif, the Windows graphics an
Presentation Manager, although based on essentially similar concepts, differ in me
ways, some significant (in Windows and PM creating a user interface object displa
it immediately, whereas under Motibu first build the corresponding structure and
then call a “realize” operation to display it), some just a matter of convention (scree
coordinates are measured from the top left in PM, from the bottom left in the other:
Many user interface conventions also vary. Most of these differences are a nuisanc
end users, who just want something that works and “looks nice”, and do not ce
whether window corners are sharp or slightly rounded. The differences are an ev
worse nuisance to developers, who must choose between losing part of their poter
market or wasting precious develognt time on portincefforts.

The library and the application builder

To answer the needs of developers and enable them to produce applications that
satisfy their end users, we must go beyond the toolkits and provide portable, high-le:
tools that relieve developers from the more tedious and repetitive parts of their jc
allowing them to devote their creativity to the truly innovative aspects.

The toolkits provide a good basis, since they support many of the need
mechanisms. But we must hide their details and complement them with more usable toc

The basis of the solution is a library of reusable classes, supporting the fundamer
data abstractions identified in this chapter, in particular the notions of window, men
context, event, command, state, application.

For some of the tasks encountered in building an application, developers will find
convenient to work not by writing software texts in the traditional fashion, but by relyin
on an interactive system, called an application builder, which will enable them to expre
their needs in a graphical, WYSIWIG form; in other words, to use for their own work th
interface techniques that they offer to their users. An application builder is a tool who
end users are themselves developers; they use the application builder to build the par

1066 SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATION:§32.2

their systems that may be specified visually and interactively. The term “application
builder” indicates that this tool is far more ambitious than plain “interface builders”, which
only cover the user interface of an application. Our application builder must go further into
expressing the structure and semantics of an application, stopping only where software
text becomes the only reasonable solution.

In defining the library and the application builder, we should be guided, as always,
by the criteria of reusability and extendibility. This means in particular that for every data
abstraction identified below (such as context, command or state) the application builder
should provide two tools:

» For reusability, icatalog (event catalog, context catalog, state ca...) containing
predefined representatives of the abstraction, which developers can include directly
into their applications.

» For extendibility, areditor (context editor, command editor, state e«...) enabling
developers to produce their own variants, either from scratch or more commonly by
pulling out an element from a catalog and then modifying it.

Using the object-oriented approach

In the object-oriented approach to software construction, the key step is to find the right
data abstractions: the types of objects which characterize applications in the given area.

To advance our understanding of graphical user interfaces and devise good
mechanisms for building applications, we must explore the corresponding abstractions.
Some are obvious; others will prove more subtle.

Each of the abstractions encountered below will yield at least one class in the library.
Some will yield a set of classes, all descending from a common ancestor describing the
most general notion. For example, the library includes several classes describing variants
of the notion of menu.

We will first examine the overall structure of a portable graphics library; then
consider the main graphical abstractions covering the geometrical objects to be displayed,
and the “interaction objects” supporting event-driven dialogues; finally we will study the
more advanced abstractions describing applications: command, state, application itself.

32.2 PORTABILITY AND PLATFORM ADAPTATION

Some application developers want a portable library, which will enable them to write a
single source text that will then adapt automatically to the look-and-feel of many
platforms, at the price of a recompile but without any change. Others want the reverse: to
gain full access to all the specific “controls” and “widgets” of a particular platform such
as Microsoft Windows, but in a convenient fashion (rather than at the typically low level
of the native libraries). Yet others want a bit of both: portability as the default, but the
ability to go native when needed.

With a careful design, relying on a two-layer structure, we can try to satisfy all of them:

§32.2 PORTABILITY AND PLATFORM ADAPTATION 1067

Graphical
libraries
architecture

(See a similar archi
tecture for concur-
rency page970.)

Sed’AN APPLICA-
TION: THEHANDLE
TECHNIQUE", 24.3,
page 817

Platform-independent libraryVision)

WEL MEL PEL
(Windows) (Motif) (Presentation| *"ttttttitcttC
Manager)

To make things more concrete the figure shows the names of the correspond
components in ISE’s environment, but the idea is applicable to any graphical library. .
the top level Visior) there is a portable graphical library; at the bottom level you find
specialized libraries, such WEL for Windows, adapted to one platform only.

WEL and other bottom-level libraries can be used directly, but they also serve as t
platform-dependent component of the top lewisior mechanisms are implemented
through WEL on Windows, MEL on Motif and so on. This technique has severc
advantages: for the application developers, it fosters compatibility of concepts al
techniques; for the tool developers, it removes unneeded duplications, and facilitates
implementation of the top level (which relies on clean, abstract, assertion-equipped ¢
inheritance-rich O-O libraries such as WEL, rather than interfacing directly with the
level, always a dangerous proposition). The connection between the two levels relies
the handle design pattern developed in an earlier chapter.

Application developers have a choice of level:

* If you want to ensure portability, use the higher layer. This is also of interest t
developers who, even if they work for a single platform, want to benefit from the high
degree of abstraction provided by high-level libraries suVisior.

* If you want to have direct access to all the specific mechanisms of a platform (f
example the many “controls” provided by Windows NT), go to the correspondin
lower-layer library.

The last comment touches on a delicate issue. How much platform-speci
functionality do you lose by relying on a portable library? The answer is necessarily
tradeoff. Some early portable libraries used intersection (or “lowest common
denominator”) approach, limiting the facilities offered to those that were presentin nati
form in all the platforms supported. This is usually not enough. At the other extreme tl
library authors might use ttunion approach: provide every single mechanism of every
supported platform, using explicit algorithms to simulate the mechanisms that are r
natively available on a particular platform. This policy would produce an enormous ar
redundant library. The answer has to be somewhere in-between: the library authors n
decide individually, for every mechanism present on some platforms only, whether it
important enough to warrant writing a simulation on the other platforms. The result mu
be a consistent library, simple enough to be used without knowledge of the individu
platforms, but powerful enough to produce impressive visual applications.

1068 SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATION:'§32.3

For application developers, one more criterion in choosing between the two layers is
performance. If your main reason for considering the top layer is abstraction rather than
portability, you must be aware that including the extra classes will carrgice grenalty
(any time penalty should be negligible with a well-designed library), and decide whether
it is worthwhile. Clearly, a one-platform library such as WEL will be more compact.

Finally, note that the two solutions are not completely exclusive. You can do the bulk
of your work at the top level and provide some platform-specific goodies to users working
on your top-selling platform. This has to be done carefully, of course; carelessly mixing
portable and non-portable elements would soon cancel any expected benefits, even partial,
of portable development. An elegant design pattern (which ISE has applied to some of its
libraries) relies on assignment attempt. The idea is this. Consider a graphical object known
through an entit mwhose type is at the top level, sMENU. Any actual object to which
it will become attached at run time will be, of course, platform-specific; so it will be an
instance of a lower-layer class, sSWEL _MENL. To apply platform-specific features you
need an entity, sewm, of this type. You can use the following scheme:

wm?=m
if wm= Voidthen
... We are not on Windows! Do nothing, or somethinge
else
... Here we may apply arWEL_MENL (i.e. Windows-specific)
feature towrr ...
end
We can picture this scheme as a way to go into the Windows-only room. The room
is locked, to prevent you from claiming, if someone finds you there, that you just
wandered into it by accident. You are permitted to enter, but you must ask for the key,

explicitly and politely. For such official and conditional requests to enter a special-
purpose area, the key is assignment attempt.

32.3 GRAPHICAL ABSTRACTIONS

Many applications will use graphical figures, often representing objects from an external
system. Let us see a simple set of abstractions that will cover this need.

Figures

First we need a proper set of abstractions for the graphical part of an interactive
application. To keep things simple, this discussion will assume two-dimensional graphics.

Geographical maps provide an excellent model. A map (of a country, a region, a city)
provides a visual representation of some reality. The design of a map uses several levels
of abstraction:

§32.3 GRAPHICAL ABSTRACTIONS 1069

« We must view the reality behind the model (in an already abstracted form) as a se
geometrical shape figures. For a map the figures represent rivers, roads, towns an
other geographical objects.

« The map will describe a certain set of figures, which may be calleworld.

* The maps will show only a part of the world — one or more areas which we will ca
windows, and assume to be rectangular. For example a map can have one m
window devoted to a country, and subsidiary windows devoted to large cities ¢
outlying parts (as with Corsica in maps of France or Hawaii in maps of the USA).

» Physically the map appears on a physical display mediundevice. The device is
usually a sheet of paper, but we may also use a computer screen. Various parts of
device will be devoted to the various windows.

The graphical
abstractions

WINDOW

DEVICE

W|ndow3
Wmdowl ﬁ

Wmdows

Window?2 W|ndow4

1070 SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATION:'§32.3

The four basic concepts -WORLL, FIGURE, WINDOW, DEVICE — transpose
readily to general graphical applications, where the world may contain arbitrary figures of
interest to a certain computer application, rather than just representations of geographical
objects. Rectangular areas of the world (windows) will be displayed on rectangular areas
of the device (the computer screen).

The figure on the previous page shows the three planes: world (bottom), window
(middle) and device (top). The notion of window plays a central role, as each window is
associated both with an area of the world and with an area of the device. Windows also
cause the only significant extension to the basic map concepts: support for hierarchically
nested windows. Our windows will be permitted to have subwindows, with no limit on the
nesting level. (No nesting appears in the figure.)

Coordinates

We need two coordinate systems: device coordinates and world coordinates. Device
coordinates measure the positions of displayed items on the device. On computer screens,
they are often measured in pixels; a pixel (picture element) is the size of a small dot,
usually the smallest displayable item.

There is no standard for the unit of world coordinates, and there should not be since
the world coordinate system is best left for application developers to decide: an
astronomer may wish to work in light years, a cartographer in kilometers, a biologist in
millimeters or microns.

Because a window captures part of a world, it will have a certain world position
(defined by thex andy world coordinates of its top left corner) and a certain extent
(horizontal and vertical lengths of the parts of the world covered). The world position and
the extent are expressed in world coordinate units.

Because the window is displayed on part of a device, it has a certain device position
(defined by thex andy device coordinates of its top left corner) and a certain size on the
device, all expressed in device coordinate units. For a window with no parent, the position
is defined with respect to the device; for a subwindow, the position is always defined
relative to the parent. Thanks to this convention, any application that uses windows may
run with the whole screen to itself as well as in a previously allocated window.

Operations on windows

To take care of the hierarchical nature of windows we make WINDOW an heir of

class TWO_WAY_TRE, an implementation of trees. As a result, all hierarchical
operations are readily available as tree operations: add a subwindow (child), reattach to a
different enclosing window (parent) and so on. To set the world and device positions of a
window, we will use one of the following procedures (all with two arguments):

Set absolute position |Move, relative to current positipn

Position in world |go pan

Position on deviceplace proportional |move_proportional
place_pixel move_pixel

§32.4 INTERACTION MECHANISMS 1071

The_proportionalprocedures interpret the values of their arguments as fractions
the parent window’s height and width; arguments to the other procedures are absol
values (in world coordinates fcgo and pan, in device coordinates for th pixel
procedures). Procedures are similarly available to set the extent and size of a window

Graphical classes and operations

All classes representing figures are descendants of a deferrecFIGURE; standard
features includdisplay, hide, translate, rotate, scale.

It is indispensable to keep the set of figure types extendible, allowing applicatic
developers (and, indirectly, end users of graphical tools) to define new types. We he
seen how to do this: provide a clitCOMPOSITE_FIGUR, built by multiple inheritance
from FIGURE and a container type suchLIST[FIGURE].

32.4 INTERACTION MECHANISMS

Let us now turn our attention to how our applications will interact with users.
Events

Modern interactive applications aevent-driven: as the interactive user causes certain
events to occur (for example by entering text at the keyboard, moving the mouse
pressing its buttons), certain operations get executed.

Innocuous as this description may seem, it represents a major departure from m
traditional styles of interaction with users. In the old style (which is still by far the mos
common), a program that needed input from its user would get it by repeatedly execut
scenarios of the form

... Perform some computatic...

print ("Please type in the value for parameter ")x.

read_input

xxx:= value_read

... Proceed with the computation, until it again needs a value from th...i1ser

In the event-driven style, roles are reversed: operations occur not because
software has reached a preset stage of its execution, but because a certain event, us
triggered by the interactive user, has caused execution of a certain component of
software. Input determines the software’s execution rather than the reverse.

The object-oriented style of software development plays an important role in makir
such schemes possible. Dynamic binding, in particular, enables the software to cal
feature on an object under the understanding that the form of the object will determine h
it will handle the feature. The feature may be associated with an event and the object
command; more on this below.

The notion of event is important enough in this discussion to yield a data abstractic
An event object (instance of tIEVENT class) will represent a user action; examples are
key press, mouse movement, mouse button down, mouse button up. These predef
events will be part of the event catalog.

1072 SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATION:§32.5

In addition, it must be possible to define custom events, which a software component
may send explicitly by a procedure call of the fcraise (g).

Contexts and user interface objects

GUI toolkits offer a number of predefined “User Interface Objects”. windows, menus,
buttons, panels. Here is a simple example, anbutton.

A button
OK

Superficially, a user interface object is just a figure. But unlike the figures seen above
it usually has no relation with the underlying world: its role is limited to the handling of
user input. More precisely, a user interface object provides a special «context.

To understand the need for the notion of context, we must remember that an event
generally does not suffice to determine the software’s response. Pressing a mouse button,
for example, will give different results depending on where the mouse cursor is. Contexts
are precisely those conditions which determine the responses that an application
associates with events.

In general, then, a context is simply a boolean value — a value which will be true or
false at any instant of the software’s execution.

The most common contexts are associated with user interface objects. A button such
as the one above defines the boolean condition “is the mouse cursor inside the button?”, a
context. Contexts of this kind will be writteIN (uio), whereuio is the user interface
object.

For every contexc its negatiornot c is also a contexinot IN (uio) is also called
OUT (uio). The contexANYWHERI is always true; its negatiNOWHERL is never true.

Our application builder should then have a context catalog, which will include
ANYWHERI and contexts of the forilN (uio) for all commonly useful interface objects
uio. In addition, we may wish to enable application developers to define their own
contexts; the application builder will provide a context editor for this purpose. Among
other facilities, the context editor makes it possible to otnot ¢ for anyc (in particular
ac from the catalog).

32.5 HANDLING THE EVENTS

We now have the list of events, and the list of contexts in which these events may be
significant. We must describe what to do as a response to these events. The responses will
involve command andtransition label..

§32.5 HANDLING THE EVENTS 1073

“Command as a
class”, page 693

An exit
command

Commands

Recognizing the notion of command as an important abstraction is a key step in produc
good interactive applications.

This notion was studied as part of the Undoing case study. As you remember
command object represents the information needed to execute a user-requested oper
and, if undoing is supported, cancel it.

To the features defined in the earlier discussion, we will add the attexit_labe,
explained below.

Basic scheme

With contexts, events and commands we have the basic ingredients to define the b
operation of an interactive application, which our application builder should support: ¢
application developer will select the valid context-event combinations (which events a
recognized in which contexts) and, for every one of them, define the associated comme

This basic idea can provide the first version of an application builder. There shou
be catalogs of contexts and events (based on the underlying toolkit) as well as comma
(provided by the development environment, and available for application developers
extend). A graphical metaphor should make it possible to select a context-eve
combination, for example left-click on a certain button, and select a command to |
executed in response.

States

For a fully general scheme we should include an extra level of abstraction, giving tl
Context-Event-Command-Statt model of interactive graphical applications.

In an application a given context-event combination does not always have the sa
effect. For example, you might find yourself during a session in a situation where part
the screen looks likthis:

Quit editinglast_drawing

OK Cancel

B

1074 SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATIONS §32.5

In this state the application recognizes various events in various contexts; for
example you may click on a figure to move it, or request the Save command by clicking
on the OK button shown. If you choose this latter possibility, a new panel appears:

Confirming a
command

Quit editinglast_drawing

OK Cancel

Overwrite existing file
last_drawin@

OK Cancel

At this stage only two context-event combinations will be accepted: clicking on the
“OK” or on the “Cancel” button of the new panel. All others have been disabled (and the
application has dimmed the rest of the figure as a reminder that everything but the two
buttons is temporarily inactive). What happened is that the session has entered a new state
of the application. States, also calletbdes are a familiar notion in discussions of
interactive systems, but are seldom defined precisely. Here we have the seeds for a formal
definition: a state is characterized by a set of acceptable context-event combinations and
a set of commands; for each context-event combination, the state defines the associated
command. This will be restated as a mathematical definition below.

Many interactive applications, graphical or not, will have several states.

A typical example is the well-knowvii editor under Unix. Since this tool is not graphical,
events are simply key presses (each keyboard key triggering a different event) and the
contexts are various possible cursor positions (under a character, at beginning of line, at
end of line etc.). A rough analysis of Vi indicates at least four states:

« In the basic state (which is also the initial one for an end user who calls the editor
on a new or existing file), typing a letter key will, in most cases, directly execute a
command associated with the letter. For example, typuhgletes the character at
cursor position, if any. Some keys cause a transition to another state; for example
typing a colon leads to the command state, typingads to the insertion state, and
typing R leads to the replacement state. Some letters cause unaccepted events; for
example (unless it has been expressly defined as a macro) the ataro effect.

§32.5 HANDLING THE EVENTS 1075

» In the command state, only one is available, at the bottom of the Vi window; it
serves to enter commands such as “save” or “restart”.

* In the insertion state, any key corresponding to a printable character is acceptable
as event; the corresponding character will be inserted into the text, causing
displacement of any existing text to its right. The ESCAPE key gets the session back
to basic state.

» Replacementstate is a variant of insertion state in which the characters that you type
overwrite rather than displace the ones already in place.

Partial state
diagram for Vi

COMMAND .
Return wa-Return...

Return

Escape Escape

| \
Initial state
—> State transition
x dd p P D, =g EXit transition

The article was in The literature on user interfaces is critical of states because they can be confusin
the special Smalltalk ysers. An early article on the Smalltalk user interface contained a picture of the article
l[sésglggérgy&ﬂ] author wearing a T-shirt that read “Don’t mode me in!”. It is indeed a general principle
sound user interface design to ensure that at every stage of a session end users shoulc
as many commands as possible at their disposal (instead of having to change state be
they can execute certain important commands).

In accordance with this principle, a good design will try to minimize the number o
states. The principle does not mean, however, that this number should always be one.
an extreme interpretation of the “don’t mode me in” slogan could in fact decrease t
guality of the user interface, as too many unrelated commands available at the same t
may confuse end users. Furthermore, there may be good reasons to restrict the numb
commands in a certain situation (for example when the application needs an urg
response from its end user).

States, in any case, should be explicit for the developers, and usually for the €
users as well. This is the only way to enable developers to apply the user interface po
of their choice — whether of the strongly anti-modal persuasion or more tolerant.

So our application builder will provide developers with an explSIfIATE
abstraction; as for the other abstractions, there will be a state catalog, containing states
have proved to be of general use, and a state editor, enabling developers to define
states, often by modifying states extracted from the catalog.

1076 SOME O-O TECHNIQUES FOR GRAPHICAL INTERACTIVE APPLICATION'§32.6

Applications

The last major data abstraction is the notion of application.

All the previous abstractions were intermediate tools. What developers really want
to build is applications. A text processing system, an investment banking system, a factory
control system will be examples of applications.

To describe an application, we need a set of states, transitions between these states,
and the indication of which state is the initial one (in which all sessions will begin). We
have seen that a state associates a certain response with every accepted context-event pair;
the response, as noted, includes a command. To build complete applications, we may also
need to include in a response some indication of the context-event pair which led to the
response, so that different combinations may trigger transitions to different states. Such
information will be called a transition label.

With states and transition label we may build the transition diagram describing an
entire applications, such as the partial diagram for Vi shown on the preceding page.

Context-Event-Command-State: a summary

The abstractions just defined can serve as the basis for a powerful interactive application
builder — not just alinterface builder, but a tool that enables application developers to
build entire applications graphically; they will explore visual catalogs of contexts, events,
and, most importantly commands; selecting the desired elements graphically, they will
build the desired context-event-command associations through a simple drag-and-drop
mechanism until they have a complete application.

Because simple applications can often rely on just one state, the application builder
should make the notion of state should as unobtrusive as possible. More advanced
applications, however, should be able to use as many states as they need, and (if only for
interface consistency) to derive a nstate incrementally from an existing one.

32.6 A MATHEMATICAL MODEL

Some of the concepts presented informally in this chapter, in particular the notion of state,
have an elegant mathematical description based on the notfinite functior and the
mathematical transformation knowncurrying.

Because these results are not used in the rest of the book, and mostly of interest to
readers who like to explore the mathematical models of software concepts, the
corresponding sections are not printed here but appear in electronic form in the CD-ROM
accompanying this book, aisupplementary chapter entitled “mathematical backgrc,und”
an extract fron[M 1995e.

32.7 BIBLIOGRAPHICAL NOTES

The ideas for an application builder sketched in this chapter derive largely from ISE’s
Build application builder, described in detail[M 1995e, which also discusses in detail

the underlying mathematical model. (This is the manual from which the extra chapter on
the CD-ROM was extracted.)

	32 32 Some O-O techniques for graphical interactiv...
	32.1 NEEDED TOOLS
	End users, application developers and tool develop...
	Graphical systems, window systems, toolkits
	The library and the application builder
	Using the object-oriented approach

	32.2 PORTABILITY AND PLATFORM ADAPTATION
	Graphical libraries architecture

	32.3 GRAPHICAL ABSTRACTIONS
	Figures
	The graphical abstractions

	Coordinates
	Operations on windows
	Graphical classes and operations

	32.4 INTERACTION MECHANISMS
	Events
	Contexts and user interface objects
	A button

	32.5 HANDLING THE EVENTS
	Commands
	Basic scheme
	States
	An exit command
	Confirming a command
	Partial state diagram for Vi

	Applications
	Context-Event-Command-State: a summary

	32.6 A MATHEMATICAL MODEL
	32.7 BIBLIOGRAPHICAL NOTES

