import numpy as np import pandas as pd from tqdm import tqdm from datetime import datetime from sklearn.preprocessing import LabelEncoder import pickle import datetime import os import sys from pathlib import Path sys.path.append(os.path.dirname(os.path.abspath(__file__)) + './../..') if not os.path.exists("./data/dict"): os.makedirs("./data/dict") if not os.path.exists("./data/csv"): os.makedirs("./data/csv") class Generator(): def __init__(self,task,cohort_output,if_mort,if_admn,if_los,feat_cond,feat_proc,feat_out,feat_chart,feat_med,impute,include_time=24,bucket=1,predW=6): self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_med = feat_cond,feat_proc,feat_out,feat_chart,feat_med self.cohort_output=cohort_output self.impute=impute self.task = task self.data = self.generate_adm() if not os.path.exists("./data/dict/"+self.task): os.makedirs("./data/dict/"+self.task) print("[ READ COHORT ]") self.generate_feat() print("[ READ ALL FEATURES ]") if if_mort: self.mortality_length(include_time,predW) print("[ PROCESSED TIME SERIES TO EQUAL LENGTH ]") elif if_admn: self.readmission_length(include_time) print("[ PROCESSED TIME SERIES TO EQUAL LENGTH ]") elif if_los: self.los_length(include_time) print("[ PROCESSED TIME SERIES TO EQUAL LENGTH ]") self.smooth_meds(bucket) print("[ SUCCESSFULLY SAVED DATA DICTIONARIES ]") def generate_feat(self): if(self.feat_cond): print("[ ======READING DIAGNOSIS ]") self.generate_cond() if(self.feat_proc): print("[ ======READING PROCEDURES ]") self.generate_proc() if(self.feat_out): print("[ ======READING OUT EVENTS ]") self.generate_out() if(self.feat_chart): print("[ ======READING CHART EVENTS ]") self.generate_chart() if(self.feat_med): print("[ ======READING MEDICATIONS ]") self.generate_meds() def generate_adm(self): data=pd.read_csv(f"./data/cohort/{self.cohort_output}.csv.gz", compression='gzip', header=0, index_col=None) data['intime'] = pd.to_datetime(data['intime']) data['outtime'] = pd.to_datetime(data['outtime']) data['los']=pd.to_timedelta(data['outtime']-data['intime'],unit='h') data['los']=data['los'].astype(str) data[['days', 'dummy','hours']] = data['los'].str.split(' ', expand=True) data[['hours','min','sec']] = data['hours'].str.split(':', expand=True) data['los']=pd.to_numeric(data['days'])*24+pd.to_numeric(data['hours']) data=data.drop(columns=['days', 'dummy','hours','min','sec']) data=data[data['los']>0] data['Age']=data['Age'].astype(int) #print(data.head()) #print(data.shape) return data def generate_cond(self): cond=pd.read_csv("./data/features/preproc_diag_icu.csv.gz", compression='gzip', header=0, index_col=None) cond=cond[cond['stay_id'].isin(self.data['stay_id'])] cond_per_adm = cond.groupby('stay_id').size().max() self.cond, self.cond_per_adm = cond, cond_per_adm def generate_proc(self): proc=pd.read_csv("./data/features/preproc_proc_icu.csv.gz", compression='gzip', header=0, index_col=None) proc=proc[proc['stay_id'].isin(self.data['stay_id'])] proc[['start_days', 'dummy','start_hours']] = proc['event_time_from_admit'].str.split(' ', -1, expand=True) proc[['start_hours','min','sec']] = proc['start_hours'].str.split(':', -1, expand=True) proc['start_time']=pd.to_numeric(proc['start_days'])*24+pd.to_numeric(proc['start_hours']) proc=proc.drop(columns=['start_days', 'dummy','start_hours','min','sec']) proc=proc[proc['start_time']>=0] ###Remove where event time is after discharge time proc=pd.merge(proc,self.data[['stay_id','los']],on='stay_id',how='left') proc['sanity']=proc['los']-proc['start_time'] proc=proc[proc['sanity']>0] del proc['sanity'] self.proc=proc def generate_out(self): out=pd.read_csv("./data/features/preproc_out_icu.csv.gz", compression='gzip', header=0, index_col=None) out=out[out['stay_id'].isin(self.data['stay_id'])] out[['start_days', 'dummy','start_hours']] = out['event_time_from_admit'].str.split(' ', -1, expand=True) out[['start_hours','min','sec']] = out['start_hours'].str.split(':', -1, expand=True) out['start_time']=pd.to_numeric(out['start_days'])*24+pd.to_numeric(out['start_hours']) out=out.drop(columns=['start_days', 'dummy','start_hours','min','sec']) out=out[out['start_time']>=0] ###Remove where event time is after discharge time out=pd.merge(out,self.data[['stay_id','los']],on='stay_id',how='left') out['sanity']=out['los']-out['start_time'] out=out[out['sanity']>0] del out['sanity'] self.out=out def generate_chart(self): chunksize = 5000000 final=pd.DataFrame() for chart in tqdm(pd.read_csv("./data/features/preproc_chart_icu.csv.gz", compression='gzip', header=0, index_col=None,chunksize=chunksize)): chart=chart[chart['stay_id'].isin(self.data['stay_id'])] chart[['start_days', 'dummy','start_hours']] = chart['event_time_from_admit'].str.split(' ', -1, expand=True) chart[['start_hours','min','sec']] = chart['start_hours'].str.split(':', -1, expand=True) chart['start_time']=pd.to_numeric(chart['start_days'])*24+pd.to_numeric(chart['start_hours']) chart=chart.drop(columns=['start_days', 'dummy','start_hours','min','sec','event_time_from_admit']) chart=chart[chart['start_time']>=0] ###Remove where event time is after discharge time chart=pd.merge(chart,self.data[['stay_id','los']],on='stay_id',how='left') chart['sanity']=chart['los']-chart['start_time'] chart=chart[chart['sanity']>0] del chart['sanity'] del chart['los'] if final.empty: final=chart else: final=final.append(chart, ignore_index=True) self.chart=final def generate_meds(self): meds=pd.read_csv("./data/features/preproc_med_icu.csv.gz", compression='gzip', header=0, index_col=None) meds[['start_days', 'dummy','start_hours']] = meds['start_hours_from_admit'].str.split(' ', -1, expand=True) meds[['start_hours','min','sec']] = meds['start_hours'].str.split(':', -1, expand=True) meds['start_time']=pd.to_numeric(meds['start_days'])*24+pd.to_numeric(meds['start_hours']) meds[['start_days', 'dummy','start_hours']] = meds['stop_hours_from_admit'].str.split(' ', -1, expand=True) meds[['start_hours','min','sec']] = meds['start_hours'].str.split(':', -1, expand=True) meds['stop_time']=pd.to_numeric(meds['start_days'])*24+pd.to_numeric(meds['start_hours']) meds=meds.drop(columns=['start_days', 'dummy','start_hours','min','sec']) #####Sanity check meds['sanity']=meds['stop_time']-meds['start_time'] meds=meds[meds['sanity']>0] del meds['sanity'] #####Select hadm_id as in main file meds=meds[meds['stay_id'].isin(self.data['stay_id'])] meds=pd.merge(meds,self.data[['stay_id','los']],on='stay_id',how='left') #####Remove where start time is after end of visit meds['sanity']=meds['los']-meds['start_time'] meds=meds[meds['sanity']>0] del meds['sanity'] ####Any stop_time after end of visit is set at end of visit meds.loc[meds['stop_time'] > meds['los'],'stop_time']=meds.loc[meds['stop_time'] > meds['los'],'los'] del meds['los'] meds['rate']=meds['rate'].apply(pd.to_numeric, errors='coerce') meds['amount']=meds['amount'].apply(pd.to_numeric, errors='coerce') self.meds=meds def mortality_length(self,include_time,predW): print("include_time",include_time) self.los=include_time self.data=self.data[(self.data['los']>=include_time+predW)] self.hids=self.data['stay_id'].unique() if(self.feat_cond): self.cond=self.cond[self.cond['stay_id'].isin(self.data['stay_id'])] self.data['los']=include_time ####Make equal length input time series and remove data for pred window if needed ###MEDS if(self.feat_med): self.meds=self.meds[self.meds['stay_id'].isin(self.data['stay_id'])] self.meds=self.meds[self.meds['start_time']<=include_time] self.meds.loc[self.meds.stop_time >include_time, 'stop_time']=include_time ###PROCS if(self.feat_proc): self.proc=self.proc[self.proc['stay_id'].isin(self.data['stay_id'])] self.proc=self.proc[self.proc['start_time']<=include_time] ###OUT if(self.feat_out): self.out=self.out[self.out['stay_id'].isin(self.data['stay_id'])] self.out=self.out[self.out['start_time']<=include_time] ###CHART if(self.feat_chart): self.chart=self.chart[self.chart['stay_id'].isin(self.data['stay_id'])] self.chart=self.chart[self.chart['start_time']<=include_time] #self.los=include_time def los_length(self,include_time): print("include_time",include_time) self.los=include_time self.data=self.data[(self.data['los']>=include_time)] self.hids=self.data['stay_id'].unique() if(self.feat_cond): self.cond=self.cond[self.cond['stay_id'].isin(self.data['stay_id'])] self.data['los']=include_time ####Make equal length input time series and remove data for pred window if needed ###MEDS if(self.feat_med): self.meds=self.meds[self.meds['stay_id'].isin(self.data['stay_id'])] self.meds=self.meds[self.meds['start_time']<=include_time] self.meds.loc[self.meds.stop_time >include_time, 'stop_time']=include_time ###PROCS if(self.feat_proc): self.proc=self.proc[self.proc['stay_id'].isin(self.data['stay_id'])] self.proc=self.proc[self.proc['start_time']<=include_time] ###OUT if(self.feat_out): self.out=self.out[self.out['stay_id'].isin(self.data['stay_id'])] self.out=self.out[self.out['start_time']<=include_time] ###CHART if(self.feat_chart): self.chart=self.chart[self.chart['stay_id'].isin(self.data['stay_id'])] self.chart=self.chart[self.chart['start_time']<=include_time] def readmission_length(self,include_time): self.los=include_time self.data=self.data[(self.data['los']>=include_time)] self.hids=self.data['stay_id'].unique() if(self.feat_cond): self.cond=self.cond[self.cond['stay_id'].isin(self.data['stay_id'])] self.data['select_time']=self.data['los']-include_time self.data['los']=include_time ####Make equal length input time series and remove data for pred window if needed ###MEDS if(self.feat_med): self.meds=self.meds[self.meds['stay_id'].isin(self.data['stay_id'])] self.meds=pd.merge(self.meds,self.data[['stay_id','select_time']],on='stay_id',how='left') self.meds['stop_time']=self.meds['stop_time']-self.meds['select_time'] self.meds['start_time']=self.meds['start_time']-self.meds['select_time'] self.meds=self.meds[self.meds['stop_time']>=0] self.meds.loc[self.meds.start_time <0, 'start_time']=0 ###PROCS if(self.feat_proc): self.proc=self.proc[self.proc['stay_id'].isin(self.data['stay_id'])] self.proc=pd.merge(self.proc,self.data[['stay_id','select_time']],on='stay_id',how='left') self.proc['start_time']=self.proc['start_time']-self.proc['select_time'] self.proc=self.proc[self.proc['start_time']>=0] ###OUT if(self.feat_out): self.out=self.out[self.out['stay_id'].isin(self.data['stay_id'])] self.out=pd.merge(self.out,self.data[['stay_id','select_time']],on='stay_id',how='left') self.out['start_time']=self.out['start_time']-self.out['select_time'] self.out=self.out[self.out['start_time']>=0] ###CHART if(self.feat_chart): self.chart=self.chart[self.chart['stay_id'].isin(self.data['stay_id'])] self.chart=pd.merge(self.chart,self.data[['stay_id','select_time']],on='stay_id',how='left') self.chart['start_time']=self.chart['start_time']-self.chart['select_time'] self.chart=self.chart[self.chart['start_time']>=0] def smooth_meds(self,bucket): final_meds=pd.DataFrame() final_proc=pd.DataFrame() final_out=pd.DataFrame() final_chart=pd.DataFrame() if(self.feat_med): self.meds=self.meds.sort_values(by=['start_time']) if(self.feat_proc): self.proc=self.proc.sort_values(by=['start_time']) if(self.feat_out): self.out=self.out.sort_values(by=['start_time']) if(self.feat_chart): self.chart=self.chart.sort_values(by=['start_time']) t=0 for i in tqdm(range(0,self.los,bucket)): ###MEDS if(self.feat_med): sub_meds=self.meds[(self.meds['start_time']>=i) & (self.meds['start_time']=i) & (self.proc['start_time']=i) & (self.out['start_time']=i) & (self.chart['start_time']0]=1 df2[df2<0]=0 rate.iloc[:,0:]=df2.iloc[:,0:]*rate.iloc[:,0:] amount.iloc[:,0:]=df2.iloc[:,0:]*amount.iloc[:,0:] #print(df2.head()) dataDic[hid]['Med']['signal']=df2.iloc[:,0:].to_dict(orient="list") dataDic[hid]['Med']['rate']=rate.iloc[:,0:].to_dict(orient="list") dataDic[hid]['Med']['amount']=amount.iloc[:,0:].to_dict(orient="list") ###PROCS if(self.feat_proc): feat=proc['itemid'].unique() df2=proc[proc['stay_id']==hid] if df2.shape[0]==0: df2=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat) df2=df2.fillna(0) df2.columns=pd.MultiIndex.from_product([["PROC"], df2.columns]) else: df2['val']=1 #print(df2) df2=df2.pivot_table(index='start_time',columns='itemid',values='val') #print(df2.shape) add_indices = pd.Index(range(los)).difference(df2.index) add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan) df2=pd.concat([df2, add_df]) df2=df2.sort_index() df2=df2.fillna(0) df2[df2>0]=1 #print(df2.head()) dataDic[hid]['Proc']=df2.to_dict(orient="list") ###OUT if(self.feat_out): feat=out['itemid'].unique() df2=out[out['stay_id']==hid] if df2.shape[0]==0: df2=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat) df2=df2.fillna(0) df2.columns=pd.MultiIndex.from_product([["OUT"], df2.columns]) else: df2['val']=1 df2=df2.pivot_table(index='start_time',columns='itemid',values='val') #print(df2.shape) add_indices = pd.Index(range(los)).difference(df2.index) add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan) df2=pd.concat([df2, add_df]) df2=df2.sort_index() df2=df2.fillna(0) df2[df2>0]=1 #print(df2.head()) dataDic[hid]['Out']=df2.to_dict(orient="list") ###CHART if(self.feat_chart): feat=chart['itemid'].unique() df2=chart[chart['stay_id']==hid] if df2.shape[0]==0: val=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat) val=val.fillna(0) val.columns=pd.MultiIndex.from_product([["CHART"], val.columns]) else: val=df2.pivot_table(index='start_time',columns='itemid',values='valuenum') df2['val']=1 df2=df2.pivot_table(index='start_time',columns='itemid',values='val') #print(df2.shape) add_indices = pd.Index(range(los)).difference(df2.index) add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan) df2=pd.concat([df2, add_df]) df2=df2.sort_index() df2=df2.fillna(0) val=pd.concat([val, add_df]) val=val.sort_index() if self.impute=='Mean': val=val.ffill() val=val.bfill() val=val.fillna(val.mean()) elif self.impute=='Median': val=val.ffill() val=val.bfill() val=val.fillna(val.median()) val=val.fillna(0) df2[df2>0]=1 df2[df2<0]=0 #print(df2.head()) dataDic[hid]['Chart']['signal']=df2.iloc[:,0:].to_dict(orient="list") dataDic[hid]['Chart']['val']=val.iloc[:,0:].to_dict(orient="list") ##########COND######### if(self.feat_cond): feat=self.cond['new_icd_code'].unique() grp=self.cond[self.cond['stay_id']==hid] if(grp.shape[0]==0): dataDic[hid]['Cond']={'fids':list([''])} else: dataDic[hid]['Cond']={'fids':list(grp['new_icd_code'])} ######SAVE DICTIONARIES############## metaDic={'Cond':{},'Proc':{},'Med':{},'Out':{},'Chart':{},'LOS':{}} metaDic['LOS']=los with open("./data/dict/"+self.task+"/dataDic", 'wb') as fp: pickle.dump(dataDic, fp) with open("./data/dict/"+self.task+"/hadmDic", 'wb') as fp: pickle.dump(self.hids, fp) with open("./data/dict/"+self.task+"/ethVocab", 'wb') as fp: pickle.dump(list(self.data['ethnicity'].unique()), fp) self.eth_vocab = self.data['ethnicity'].nunique() with open("./data/dict/"+self.task+"/ageVocab", 'wb') as fp: pickle.dump(list(self.data['Age'].unique()), fp) self.age_vocab = self.data['Age'].nunique() with open("./data/dict/"+self.task+"/insVocab", 'wb') as fp: pickle.dump(list(self.data['insurance'].unique()), fp) self.ins_vocab = self.data['insurance'].nunique() if(self.feat_med): with open("./data/dict/"+self.task+"/medVocab", 'wb') as fp: pickle.dump(list(meds['itemid'].unique()), fp) self.med_vocab = meds['itemid'].nunique() metaDic['Med']=self.med_per_adm if(self.feat_out): with open("./data/dict/"+self.task+"/outVocab", 'wb') as fp: pickle.dump(list(out['itemid'].unique()), fp) self.out_vocab = out['itemid'].nunique() metaDic['Out']=self.out_per_adm if(self.feat_chart): with open("./data/dict/"+self.task+"/chartVocab", 'wb') as fp: pickle.dump(list(chart['itemid'].unique()), fp) self.chart_vocab = chart['itemid'].nunique() metaDic['Chart']=self.chart_per_adm if(self.feat_cond): with open("./data/dict/"+self.task+"/condVocab", 'wb') as fp: pickle.dump(list(self.cond['new_icd_code'].unique()), fp) self.cond_vocab = self.cond['new_icd_code'].nunique() metaDic['Cond']=self.cond_per_adm if(self.feat_proc): with open("./data/dict/"+self.task+"/procVocab", 'wb') as fp: pickle.dump(list(proc['itemid'].unique()), fp) self.proc_vocab = proc['itemid'].nunique() metaDic['Proc']=self.proc_per_adm with open("./data/dict/"+self.task+"/metaDic", 'wb') as fp: pickle.dump(metaDic, fp)