# coding=utf-8 # Lint as: python3 """The SCROLLS benchmark.""" import json import os from abc import abstractmethod import datasets from citations_and_descriptions import ( _SUMM_SCREEN_DESCRIPTION, _SUMM_SCREEN_CITATION, _GOV_REPORT_CITATION, _GOV_REPORT_DESCRIPTION, _ARXIV_CITATION, _ARXIV_DESCRIPTION, _FS_DESCRIPTION, _FS_CITATION, ) class FSConfig(datasets.BuilderConfig): """BuilderConfig for FS.""" def __init__(self, data_url, citation, url, max_source_length, tokenizer, **kwargs): """BuilderConfig for FS. Args: features: `list[string]`, list of the features that will appear in the feature dict. Should not include "label". data_url: `string`, url to download the zip file from. citation: `string`, citation for the data set. url: `string`, url for information about the data set. label_classes: `list[string]`, the list of classes for the label if the label is present as a string. Non-string labels will be cast to either 'False' or 'True'. **kwargs: keyword arguments forwarded to super. """ super(FSConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) self.features = ["pid", self.source_key, self.source_key] self.data_url = data_url self.citation = citation self.url = url self.max_source_length = max_source_length self.tokenizer = tokenizer def remove_redundant_fields(self, example): for field in self.redundant_fields: del example[field] @abstractmethod def postprocess(self, s): pass @property @abstractmethod def original_source_key(self): pass @property @abstractmethod def original_target_key(self): pass @property @abstractmethod def train_file(self): pass @property @abstractmethod def validation_file(self): pass @property @abstractmethod def test_file(self): pass @property def source_key(self): return "source" @property def target_key(self): return "target" @property @abstractmethod def id_key(self): pass @property def redundant_fields(self): return [] def preprocess(self, example): # TODO perhaps we can use this for base example[self.source_key] = example[self.original_source_key].strip() example[self.target_key] = example[self.original_target_key].strip() def prompt(self, example): pass # TODO # prompt = get_prompt(self.dataset_name, # self.template_name) # row = prompt.apply(row) def postprocess(self, example): # TODO truncate source pass class ScrollsConfig(FSConfig): def __init__(self, **kwargs): super().__init__(**kwargs) @property def original_source_key(self): return "input" @property def original_target_key(self): return "output" @property def train_file(self): return "train.jsonl" @property def validation_file(self): return "validation.jsonl" @property def test_file(self): return "test.jsonl" @property def id_key(self): return "pid" @property def redundant_fields(self): return [self.original_source_key, self.original_target_key, "id"] def process_input(self, s): prefix = s.strip() suffix = "\nSummarize the above:" prefix = _truncate_prefix(prefix, suffix, self.max_source_length, self.tokenizer) return prefix + suffix class ArxivConfig(FSConfig): # TODO properties etc... def __init__(self, **kwargs): super().__init__(**kwargs) self.train_file = "train.txt" self.validation_file = "val.txt" self.test_file = "test.txt" self.input_key = "article_text" self.output_key = "abstract_text" self.id_key = "article_id" self.redundant_fields = [self.input_key, self.output_key, self.id_key, 'labels', 'section_names', 'sections'] def process_input(self, s): prefix = ' '.join(s) suffix = "\nSummarize the above:" prefix = _truncate_prefix(prefix, suffix, self.max_source_length, self.tokenizer) return prefix + suffix def process_output(self, s): # TODO remove "" and "" ? return ' '.join(s).replace("", "").replace("", "") def _truncate_prefix(prefix, suffix, max_source_length, tokenizer): encoded_input = tokenizer.encode(prefix + suffix) while len(encoded_input) > max_source_length: overflow = len(encoded_input) - max_source_length tokenized_prefix = tokenizer.encode(prefix, add_special_tokens=False) if overflow > 0: tokenized_prefix = tokenized_prefix[:-overflow] prefix = tokenizer.decode(tokenized_prefix, skip_special_tokens=False).strip() encoded_input = tokenizer.encode(prefix + suffix) return prefix class Fs(datasets.GeneratorBasedBuilder): """The SCROLLS benchmark.""" DEFAULT_WRITER_BATCH_SIZE = 1000 # because Narrative QA is a rather large dataset BUILDER_CONFIGS = [ ScrollsConfig( name="summ_screen_fd_debug", description=_SUMM_SCREEN_DESCRIPTION, data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/summ_screen_fd_debug.zip", citation=_SUMM_SCREEN_CITATION, url="https://github.com/mingdachen/SummScreen", max_source_length=None, tokenizer=None, ), ScrollsConfig( name="gov_report", description=_GOV_REPORT_CITATION, data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/gov_report.zip", citation=_GOV_REPORT_DESCRIPTION, url="https://gov-report-data.github.io/", max_source_length=None, tokenizer=None, ), # ArxivConfig( # name="arxiv_debug", # description=_ARXIV_CITATION, # data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/arxiv_debug.zip", # citation=_ARXIV_DESCRIPTION, # url="https://github.com/armancohan/long-summarization", # max_source_length=None, # tokenizer=None, # ), ] def _info(self): features = {feature: datasets.Value("string") for feature in self.config.features} return datasets.DatasetInfo( description=_FS_DESCRIPTION + self.config.description, features=datasets.Features(features), homepage=self.config.url, citation=self.config.citation + "\n" + _FS_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(self.config.data_url) data_files = {} if self.config.data_files is not None else None if data_files is not None: for split, paths in self.config.data_files.items(): data_files[split] = paths[0] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": os.path.join(dl_dir, self.config.train_file), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": os.path.join(dl_dir, self.config.validation_file), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": os.path.join(dl_dir, self.config.test_file) if data_files is None else data_files[ "test"], }, ), ] def _generate_examples(self, data_file): with open(data_file, encoding="utf-8") as f: for line in f: row = json.loads(line) row["pid"] = row[self.config.id_key] self.config.preprocess(row) self.config.prompt(row) self.config.postprocess(row) self.config.remove_redundant_fields(row) yield row["pid"], row def _get_task_name_from_data_url(data_url): return data_url.split("/")[-1].split(".")[0]