import datasets import json import os citation=''' @inproceedings{rudinger-etal-2020-thinking, title = "Thinking Like a Skeptic: Defeasible Inference in Natural Language", author = "Rudinger, Rachel and Shwartz, Vered and Hwang, Jena D. and Bhagavatula, Chandra and Forbes, Maxwell and Le Bras, Ronan and Smith, Noah A. and Choi, Yejin", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.418", doi = "10.18653/v1/2020.findings-emnlp.418", pages = "4661--4675" } ''' class DefeasibleNLIConfig(datasets.BuilderConfig): citation=citation configs = ['atomic','snli','social'] splits=['train', 'test', 'dev'] _URLs = {(f,s):f"https://huggingface.co/datasets/metaeval/defeasible-nli/resolve/main/{f}_{s}.jsonl" for f in configs for s in splits} class DefeasibleNLI(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ DefeasibleNLIConfig( name=n, data_dir=n ) for n in configs ] def _split_generators(self, dl_manager: datasets.DownloadManager): path = lambda split: dl_manager.download(_URLs[self.config.name,split]) return [ datasets.SplitGenerator(name=name, gen_kwargs={'path':path(split),'split':split}) for name,split in zip([datasets.Split.TRAIN,datasets.Split.VALIDATION,datasets.Split.TEST], ['train','dev','test'])] def _info(self): return datasets.DatasetInfo() def _generate_examples(self,path,split): """Yields examples.""" with open(path, "r", encoding="utf-8") as f: for id_, line in enumerate(f): line_dict = json.loads(line) if not line_dict['UpdateTypeImpossible']: fields = ["Premise","Hypothesis","Update","UpdateType"]#,"UpdateTypeImpossible","UpdateTypeImpossibleReason"] line_dict = {k:v for k,v in line_dict.items() if k in fields} yield id_, line_dict