import struct import numpy as np import datasets from datasets.tasks import ImageClassification _URL = "./raw/" _URLS = { "train_images": "emnist-mnist-train-images-idx3-ubyte.gz", "train_labels": "emnist-mnist-train-labels-idx1-ubyte.gz", "test_images": "emnist-mnist-test-images-idx3-ubyte.gz", "test_labels": "emnist-mnist-test-labels-idx1-ubyte.gz", } class EMNIST(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( name="emnist-mnist", version=datasets.Version("1.0.0"), ) ] def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "image": datasets.Image(), "label": datasets.features.ClassLabel( names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] ), } ), supervised_keys=("image", "label"), task_templates=[ ImageClassification( image_column="image", label_column="label", ) ], ) def _split_generators(self, dl_manager): urls_to_download = {key: _URL + fname for key, fname in _URLS.items()} downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": ( downloaded_files["train_images"], downloaded_files["train_labels"], ), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": ( downloaded_files["test_images"], downloaded_files["test_labels"], ), "split": "test", }, ), ] def _generate_examples(self, filepath, split): """This function returns the examples in the raw form.""" # Images with open(filepath[0], "rb") as f: # First 16 bytes contain some metadata _ = f.read(4) size = struct.unpack(">I", f.read(4))[0] _ = f.read(8) images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28) # Labels with open(filepath[1], "rb") as f: # First 8 bytes contain some metadata _ = f.read(8) labels = np.frombuffer(f.read(), dtype=np.uint8) for idx in range(size): yield idx, {"image": images[idx], "label": str(labels[idx])}