import csv import json import datasets _CITATION = """\ @inproceedings{heindorf2020causenet, author = {Stefan Heindorf and Yan Scholten and Henning Wachsmuth and Axel-Cyrille Ngonga Ngomo and Martin Potthast}, title = CauseNet: Towards a Causality Graph Extracted from the Web, booktitle = CIKM, publisher = ACM, year = 2020 } """ _DESCRIPTION = """\ Crawled Wikipedia Data from CIKM 2020 paper 'CauseNet: Towards a Causality Graph Extracted from the Web.' """ _URL = "https://github.com/causenet-org/CIKM-20" # use dl=1 to force browser to download data instead of displaying it _TRAIN_DOWNLOAD_URL = "https://groups.uni-paderborn.de/wdqa/causenet/causality-graphs/extraction/wikipedia/wikipedia-extraction.tsv" _DEMO_DOWNLOAD_URL = "https://drive.google.com/uc?export=download&id=11gKbdn77ngBJr2C1iCK-YUDu9mWbXWx2" class CauseNetWikiCorpus(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "cause_word": datasets.Value("string"), "cause_id": datasets.Value("int64"), "effect_word": datasets.Value("string"), "effect_id": datasets.Value("int64"), "pattern": datasets.Value("string"), "sentence": datasets.Value("string"), "dependencies": datasets.Value("string") } ), homepage=_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) demo_path = dl_manager.download_and_extract(_DEMO_DOWNLOAD_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name="demo", gen_kwargs={"filepath": demo_path}) ] def is_valid_article(self, title): forbidden_title_parts = ['Wikipedia:', 'Template:', 'File:', 'Portal:', 'Category:', 'Draft:', 'List of', 'disambiguation'] contains_forbidden_title_part = False for forbidden_title_part in forbidden_title_parts: if forbidden_title_part in title: contains_forbidden_title_part = True break return not contains_forbidden_title_part def _generate_examples(self, filepath): """ Generate examples. We are reading csv files with the following columns: sentenceID | gold_label | sentence. """ for id_, line in enumerate(open(filepath, encoding="utf-8")): parts = line.strip().split('\t') if parts[0] != 'wikipedia_sentence': continue assert len(parts) == 11 if not self.is_valid_article(parts[2]): continue for match in json.loads(parts[10]): sentence_data = { "cause_word": match['Cause'][0], "cause_id": match['Cause'][1], "effect_word": match['Effect'][0], "effect_id": match['Effect'][1], "pattern": match['Pattern'], "sentence": json.loads(parts[7]), "dependencies": json.loads(parts[9]) } yield id_, sentence_data