import os import datasets from typing import List import json logger = datasets.logging.get_logger(__name__) _CITATION = """ """ _DESCRIPTION = """ This is the dataset repository for SDU Dataset from SDU workshop at AAAI22. The dataset can help build sequence labelling models for the task Abbreviation Detection. """ class SDUtestConfig(datasets.BuilderConfig): """BuilderConfig for Conll2003""" def __init__(self, **kwargs): """BuilderConfig forConll2003. Args: **kwargs: keyword arguments forwarded to super. """ super(SDUtestConfig, self).__init__(**kwargs) class SDUtestConfig(datasets.GeneratorBasedBuilder): """SDU Filtered dataset.""" BUILDER_CONFIGS = [ SDUtestConfig(name="SDUtest", version=datasets.Version("0.0.2"), description="SDU test dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "B-O", "B-AC", "I-AC", "B-LF", "I-LF" ] ) ), } ), supervised_keys=None, homepage="", citation=_CITATION, ) _URL = "https://huggingface.co/datasets/surrey-nlp/SDU-test/raw/main/" _URLS = { "train+dev": _URL + "sdu_data_trunc.json", #"dev": _URL + "PLOS-val15-filtered-pos_bio.json", #"test": _URL + "PLOS-test15-filtered-pos_bio.json" } def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: urls_to_download = self._URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train+dev"]}), #datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), #datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with open(filepath) as f: plod = json.load(f) for object in plod: id_ = int(object['id']) yield id_, { "id": str(id_), "tokens": object['tokens'], #"pos_tags": object['pos_tags'], "ner_tags": object['ner_tags'], }