import os import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ """ _DESCRIPTION = """ This is the dataset repository for PLOD Dataset accepted to be published at LREC 2022. The dataset can help build sequence labelling models for the task Abbreviation Detection. """ _TRAINING_FILE_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/PLOS-train70-filtered-pos_bio.json" _DEV_FILE_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/PLOS-val15-filtered-pos_bio.json" _TEST_FILE_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/PLOS-test15-filtered-pos_bio.json" _TRAINING_FILE = "PLOS-train70-filtered-pos_bio.json" _DEV_FILE = "PLOS-val15-filtered-pos_bio.json" _TEST_FILE = "PLOS-test15-filtered-pos_bio.json" class PLODfilteredConfig(datasets.BuilderConfig): """BuilderConfig for Conll2003""" def __init__(self, **kwargs): """BuilderConfig forConll2003. Args: **kwargs: keyword arguments forwarded to super. """ super(PLODfilteredConfig, self).__init__(**kwargs) class PLODfilteredConfig(datasets.GeneratorBasedBuilder): """PLOD Filtered dataset.""" BUILDER_CONFIGS = [ PLODfilteredConfig(name="PLODfiltered", version=datasets.Version("0.0.2"), description="PLOD filtered dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "ADJ", "ADP", "ADV", "AUX", "CONJ", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", "SPACE" ] ) ), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "B-O", "B-AC", "I-AC", "B-LF", "I-LF" ] ) ), } ), supervised_keys=None, homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_train = dl_manager.download_and_extract(_TRAINING_FILE_URL) downloaded_val = dl_manager.download_and_extract(_DEV_FILE_URL) downloaded_test = dl_manager.download_and_extract(_TEST_FILE_URL) data_files = { "train": _TRAINING_FILE, "dev": _DEV_FILE, "test": _TEST_FILE, } return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] pos_tags = [] ner_tags = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "pos_tags": pos_tags, "ner_tags": ner_tags, } guid += 1 tokens = [] pos_tags = [] ner_tags = [] else: # conll2003 tokens are space separated splits = line.split(" ") tokens.append(splits[0]) pos_tags.append(splits[1].strip()) ner_tags.append(splits[2].strip()) # last example yield guid, { "id": str(guid), "tokens": tokens, "pos_tags": pos_tags, "ner_tags": ner_tags, }