File size: 1,945 Bytes
c163af6 314cc95 a54a55b c163af6 314cc95 1f4e257 9d88bff 1f4e257 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import json
import os
import datasets
class TestBConfig(datasets.BuilderConfig):
"""BuilderConfig for SuperGLUE."""
def __init__(self, data_url, **kwargs):
"""BuilderConfig for SuperGLUE.
Args:
features: *list[string]*, list of the features that will appear in the
feature dict. Should not include "label".
data_url: *string*, url to download the zip file from.
citation: *string*, citation for the data set.
url: *string*, url for information about the data set.
label_classes: *list[string]*, the list of classes for the label if the
label is present as a string. Non-string labels will be cast to either
'False' or 'True'.
**kwargs: keyword arguments forwarded to super.
"""
# Version history:
# 1.0.2: Fixed non-nondeterminism in ReCoRD.
# 1.0.1: Change from the pre-release trial version of SuperGLUE (v1.9) to
# the full release (v2.0).
# 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
# 0.0.2: Initial version.
super().__init__(version=datasets.Version("1.0.2"), **kwargs)
self.data_url = data_url
class TestB(datasets.GeneratorBasedBuilder):
"""The SuperGLUE benchmark."""
BUILDER_CONFIGS = [
TestBConfig(
name="data1",
data_url="./data1/",
),
TestBConfig(
name="data2",
data_url="./data2",
)]
def _info(self):
features = {feature: datasets.Value("string") for feature in self.config.features}
return datasets.DatasetInfo(
description='desc',
features=datasets.Features(features),
)
def _generate_examples(self, data_file, split):
with open(data_file, encoding="utf-8") as f:
for line in f:
row = json.loads(line)
yield row |