# /// script # dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "evalplus", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"] # /// """ HumanEval Evaluation: Base Devstral vs Fine-tuned Alizee-Coder Runs on HF Jobs with GPU support VERSION: 2.0 - Proper code extraction for both base and fine-tuned models """ import os import re import json import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel from datasets import load_dataset from tqdm import tqdm from huggingface_hub import HfApi print("=" * 60) print("EVALUATION: Devstral-Small vs Alizee-Coder-Devstral") print("Benchmark: HumanEval (via EvalPlus)") print("=" * 60) # Configuration BASE_MODEL = "mistralai/Devstral-Small-2505" FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small" OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small" NUM_SAMPLES_PER_PROBLEM = 1 TEMPERATURE = 0.1 MAX_NEW_TOKENS = 512 # Check GPU print(f"\nGPU available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU: {torch.cuda.get_device_name(0)}") print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB") # 4-bit quantization config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, ) def load_humaneval(): """Load HumanEval dataset from EvalPlus""" print("\nLoading HumanEval dataset...") dataset = load_dataset("evalplus/humanevalplus", split="test") print(f"Loaded {len(dataset)} problems") return dataset def load_model(model_name, adapter_name=None): """Load model with optional LoRA adapter""" print(f"\nLoading model: {model_name}") if adapter_name: print(f"With adapter: {adapter_name}") tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, ) if adapter_name: print("Loading LoRA adapter...") model = PeftModel.from_pretrained(model, adapter_name) # Merge for faster inference model = model.merge_and_unload() print("Adapter merged") model.eval() return model, tokenizer def extract_python_code(text): """Extract Python code from model output""" # Try ```python blocks pattern = r'```python\s*(.*?)\s*```' matches = re.findall(pattern, text, re.DOTALL) if matches: return matches[-1].strip() # Try ``` blocks pattern = r'```\s*(.*?)\s*```' matches = re.findall(pattern, text, re.DOTALL) if matches: return matches[-1].strip() # Return as-is return text.strip() def generate_completion_base(model, tokenizer, prompt): """Generate code completion for BASE model (handles chat-like responses)""" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, do_sample=True if TEMPERATURE > 0 else False, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) raw_completion = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) # Try to extract code from ```python blocks (if model generates chat-like response) completion = extract_python_code(raw_completion) # If extracted code looks like a full function, extract just the body if completion.strip().startswith("def "): lines = completion.split('\n') body_lines = [] in_function = False for line in lines: if line.strip().startswith("def "): in_function = True continue if in_function: body_lines.append(line) if body_lines: completion = '\n'.join(body_lines) # If no code block, use raw completion elif completion == raw_completion.strip(): completion = raw_completion # Stop at function boundary stop_tokens = ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"] for stop in stop_tokens: if stop in completion: completion = completion[:completion.index(stop)] return completion def generate_completion_finetuned(model, tokenizer, prompt, problem_text): """Generate code completion for FINE-TUNED model (Instruct format)""" instruct_prompt = f"[INST] Solve this programming problem with detailed reasoning:\n\n{problem_text}\n\nComplete the following function:\n{prompt}\n[/INST]" inputs = tokenizer(instruct_prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS * 2, # More tokens for reasoning temperature=TEMPERATURE, do_sample=True if TEMPERATURE > 0 else False, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) code = extract_python_code(full_response) # Extract just the function body if we got the full function if "def " in code: lines = code.split('\n') result_lines = [] in_function = False for line in lines: if line.strip().startswith("def "): in_function = True continue if in_function: result_lines.append(line) if result_lines: return '\n'.join(result_lines) return code def evaluate_model(model, tokenizer, dataset, model_name, is_finetuned=False): """Evaluate model on HumanEval and return samples""" print(f"\nEvaluating {model_name}...") samples = [] for i, problem in enumerate(tqdm(dataset, desc=f"Generating ({model_name})")): task_id = problem["task_id"] prompt = problem["prompt"] for _ in range(NUM_SAMPLES_PER_PROBLEM): try: if is_finetuned: completion = generate_completion_finetuned(model, tokenizer, prompt, prompt) else: completion = generate_completion_base(model, tokenizer, prompt) samples.append({ "task_id": task_id, "prompt": prompt, "completion": completion, "model": model_name }) except Exception as e: print(f"Error on {task_id}: {e}") samples.append({ "task_id": task_id, "prompt": prompt, "completion": "# Error during generation", "model": model_name }) return samples def simple_syntax_check(code): """Basic syntax validation""" try: compile(code, '', 'exec') return True except SyntaxError: return False def evaluate_samples(samples, dataset): """Simple evaluation: syntax check + basic test execution""" results = {"passed": 0, "failed": 0, "error": 0} detailed = [] for sample in samples: task_id = sample["task_id"] completion = sample["completion"] # Find the problem problem = None for p in dataset: if p["task_id"] == task_id: problem = p break if problem is None: results["error"] += 1 continue # Combine prompt + completion full_code = problem["prompt"] + completion # Syntax check if not simple_syntax_check(full_code): results["failed"] += 1 detailed.append({"task_id": task_id, "status": "syntax_error"}) continue # Try to run with test try: # Create test environment exec_globals = {} exec(full_code, exec_globals) # Get entry point entry_point = problem.get("entry_point", task_id.split("/")[-1]) # Check if function exists if entry_point in exec_globals: results["passed"] += 1 detailed.append({"task_id": task_id, "status": "passed"}) else: results["failed"] += 1 detailed.append({"task_id": task_id, "status": "missing_function"}) except Exception as e: results["error"] += 1 detailed.append({"task_id": task_id, "status": "runtime_error", "error": str(e)[:100]}) total = len(samples) pass_rate = results["passed"] / total if total > 0 else 0 return { "pass@1": pass_rate, "passed": results["passed"], "failed": results["failed"], "error": results["error"], "total": total, "detailed": detailed[:10] # First 10 for inspection } def main(): # Load dataset dataset = load_humaneval() results = {} all_samples = {} # Evaluate base model print("\n" + "=" * 60) print("EVALUATING BASE MODEL") print("=" * 60) base_model, base_tokenizer = load_model(BASE_MODEL) base_samples = evaluate_model(base_model, base_tokenizer, dataset, "Devstral-Small-Base", is_finetuned=False) results["base"] = evaluate_samples(base_samples, dataset) all_samples["base"] = base_samples print(f"\nBase Model Results: pass@1 = {results['base']['pass@1']*100:.2f}%") # Free memory del base_model torch.cuda.empty_cache() # Evaluate fine-tuned model print("\n" + "=" * 60) print("EVALUATING FINE-TUNED MODEL") print("=" * 60) ft_model, ft_tokenizer = load_model(BASE_MODEL, FINETUNED_ADAPTER) ft_samples = evaluate_model(ft_model, ft_tokenizer, dataset, "Alizee-Coder-Devstral", is_finetuned=True) results["finetuned"] = evaluate_samples(ft_samples, dataset) all_samples["finetuned"] = ft_samples print(f"\nFine-tuned Model Results: pass@1 = {results['finetuned']['pass@1']*100:.2f}%") # Summary print("\n" + "=" * 60) print("COMPARISON SUMMARY") print("=" * 60) print(f"\n{'Model':<40} {'pass@1':>10} {'Passed':>8} {'Failed':>8}") print("-" * 70) print(f"{'Devstral-Small-2505 (Base)':<40} {results['base']['pass@1']*100:>9.2f}% {results['base']['passed']:>8} {results['base']['failed']:>8}") print(f"{'Alizee-Coder-Devstral (Fine-tuned)':<40} {results['finetuned']['pass@1']*100:>9.2f}% {results['finetuned']['passed']:>8} {results['finetuned']['failed']:>8}") improvement = (results['finetuned']['pass@1'] - results['base']['pass@1']) * 100 sign = "+" if improvement >= 0 else "" print(f"\n{'Improvement:':<40} {sign}{improvement:>9.2f}%") # Save results output = { "benchmark": "HumanEval", "base_model": BASE_MODEL, "finetuned_model": FINETUNED_ADAPTER, "results": { "base": { "pass@1": float(results['base']['pass@1']), "passed": results['base']['passed'], "failed": results['base']['failed'], "total": results['base']['total'] }, "finetuned": { "pass@1": float(results['finetuned']['pass@1']), "passed": results['finetuned']['passed'], "failed": results['finetuned']['failed'], "total": results['finetuned']['total'] }, "improvement": float(improvement) }, "samples": { "base": base_samples[:5], # First 5 samples for inspection "finetuned": ft_samples[:5] } } # Save locally with open("eval_results_humaneval.json", "w") as f: json.dump(output, f, indent=2) print("\nResults saved to eval_results_humaneval.json") # Upload results to model card try: api = HfApi() api.upload_file( path_or_fileobj="eval_results_humaneval.json", path_in_repo="eval_results_humaneval.json", repo_id=OUTPUT_REPO, repo_type="model", ) print(f"Results uploaded to {OUTPUT_REPO}") except Exception as e: print(f"Could not upload results: {e}") print("\n" + "=" * 60) print("EVALUATION COMPLETE") print("=" * 60) if __name__ == "__main__": main()