--- dataset_info: features: - name: type_ dtype: string - name: block struct: - name: html_tag dtype: string - name: id dtype: string - name: order dtype: int64 - name: origin_type dtype: string - name: text struct: - name: embedding sequence: float64 - name: text dtype: string splits: - name: train num_bytes: 2266682282 num_examples: 260843 download_size: 2272790159 dataset_size: 2266682282 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "es_indexing_benchmark" Here is a code on how to pull and index this dataset to elasticsearch: ```python import datasets from tqdm import tqdm from src.store.es.search import ESBaseClient from src.store.es.model import ESNode ds = datasets.load_dataset('stellia/es_indexing_benchmark', split='train', ignore_verifications=True) client = ESBaseClient() index_name = "tmp_es_index" nodes = [] for row in tqdm(ds): esnode = ESNode(**row) esnode.meta.id = esnode.block.id nodes.append(esnode) client.delete_index(index_name) client.init_index(index_name) batch_size = 5000 for i in tqdm(range(0, len(nodes), batch_size)): client.save(index_name, nodes[i:i+batch_size], refresh=False) ``` Consider empty `~/.cache/huggingface/datasets` with `rm -rf ~/.cache/huggingface/datasets` if you have problem loading the dataset.