2023-09-03 20:54:20,902 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:54:20,903 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-09-03 20:54:20,903 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:54:20,903 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator 2023-09-03 20:54:20,903 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:54:20,903 Train: 3575 sentences 2023-09-03 20:54:20,903 (train_with_dev=False, train_with_test=False) 2023-09-03 20:54:20,903 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:54:20,904 Training Params: 2023-09-03 20:54:20,904 - learning_rate: "5e-05" 2023-09-03 20:54:20,904 - mini_batch_size: "8" 2023-09-03 20:54:20,904 - max_epochs: "10" 2023-09-03 20:54:20,904 - shuffle: "True" 2023-09-03 20:54:20,904 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:54:20,904 Plugins: 2023-09-03 20:54:20,904 - LinearScheduler | warmup_fraction: '0.1' 2023-09-03 20:54:20,904 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:54:20,904 Final evaluation on model from best epoch (best-model.pt) 2023-09-03 20:54:20,904 - metric: "('micro avg', 'f1-score')" 2023-09-03 20:54:20,904 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:54:20,904 Computation: 2023-09-03 20:54:20,904 - compute on device: cuda:0 2023-09-03 20:54:20,904 - embedding storage: none 2023-09-03 20:54:20,904 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:54:20,904 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3" 2023-09-03 20:54:20,904 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:54:20,904 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:54:27,726 epoch 1 - iter 44/447 - loss 2.73716447 - time (sec): 6.82 - samples/sec: 1209.49 - lr: 0.000005 - momentum: 0.000000 2023-09-03 20:54:35,545 epoch 1 - iter 88/447 - loss 1.76275074 - time (sec): 14.64 - samples/sec: 1168.40 - lr: 0.000010 - momentum: 0.000000 2023-09-03 20:54:42,402 epoch 1 - iter 132/447 - loss 1.36332375 - time (sec): 21.50 - samples/sec: 1163.62 - lr: 0.000015 - momentum: 0.000000 2023-09-03 20:54:50,104 epoch 1 - iter 176/447 - loss 1.09517221 - time (sec): 29.20 - samples/sec: 1184.11 - lr: 0.000020 - momentum: 0.000000 2023-09-03 20:54:57,824 epoch 1 - iter 220/447 - loss 0.93311472 - time (sec): 36.92 - samples/sec: 1173.15 - lr: 0.000024 - momentum: 0.000000 2023-09-03 20:55:05,310 epoch 1 - iter 264/447 - loss 0.82310200 - time (sec): 44.40 - samples/sec: 1170.57 - lr: 0.000029 - momentum: 0.000000 2023-09-03 20:55:12,130 epoch 1 - iter 308/447 - loss 0.75010593 - time (sec): 51.22 - samples/sec: 1171.28 - lr: 0.000034 - momentum: 0.000000 2023-09-03 20:55:19,673 epoch 1 - iter 352/447 - loss 0.69595179 - time (sec): 58.77 - samples/sec: 1158.62 - lr: 0.000039 - momentum: 0.000000 2023-09-03 20:55:27,711 epoch 1 - iter 396/447 - loss 0.64348224 - time (sec): 66.81 - samples/sec: 1154.79 - lr: 0.000044 - momentum: 0.000000 2023-09-03 20:55:34,411 epoch 1 - iter 440/447 - loss 0.60334405 - time (sec): 73.51 - samples/sec: 1161.93 - lr: 0.000049 - momentum: 0.000000 2023-09-03 20:55:35,425 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:55:35,426 EPOCH 1 done: loss 0.5998 - lr: 0.000049 2023-09-03 20:55:45,844 DEV : loss 0.17524564266204834 - f1-score (micro avg) 0.5998 2023-09-03 20:55:45,870 saving best model 2023-09-03 20:55:46,360 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:55:53,314 epoch 2 - iter 44/447 - loss 0.18708094 - time (sec): 6.95 - samples/sec: 1168.87 - lr: 0.000049 - momentum: 0.000000 2023-09-03 20:56:00,420 epoch 2 - iter 88/447 - loss 0.17901121 - time (sec): 14.06 - samples/sec: 1169.74 - lr: 0.000049 - momentum: 0.000000 2023-09-03 20:56:07,576 epoch 2 - iter 132/447 - loss 0.17257848 - time (sec): 21.21 - samples/sec: 1171.26 - lr: 0.000048 - momentum: 0.000000 2023-09-03 20:56:15,224 epoch 2 - iter 176/447 - loss 0.16490695 - time (sec): 28.86 - samples/sec: 1152.42 - lr: 0.000048 - momentum: 0.000000 2023-09-03 20:56:22,217 epoch 2 - iter 220/447 - loss 0.16421404 - time (sec): 35.85 - samples/sec: 1156.16 - lr: 0.000047 - momentum: 0.000000 2023-09-03 20:56:29,655 epoch 2 - iter 264/447 - loss 0.15964720 - time (sec): 43.29 - samples/sec: 1151.14 - lr: 0.000047 - momentum: 0.000000 2023-09-03 20:56:36,715 epoch 2 - iter 308/447 - loss 0.16020622 - time (sec): 50.35 - samples/sec: 1151.99 - lr: 0.000046 - momentum: 0.000000 2023-09-03 20:56:45,118 epoch 2 - iter 352/447 - loss 0.15440493 - time (sec): 58.76 - samples/sec: 1141.39 - lr: 0.000046 - momentum: 0.000000 2023-09-03 20:56:52,814 epoch 2 - iter 396/447 - loss 0.15684350 - time (sec): 66.45 - samples/sec: 1154.44 - lr: 0.000045 - momentum: 0.000000 2023-09-03 20:57:00,179 epoch 2 - iter 440/447 - loss 0.15425075 - time (sec): 73.82 - samples/sec: 1155.31 - lr: 0.000045 - momentum: 0.000000 2023-09-03 20:57:01,430 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:57:01,430 EPOCH 2 done: loss 0.1545 - lr: 0.000045 2023-09-03 20:57:14,374 DEV : loss 0.1318657249212265 - f1-score (micro avg) 0.7219 2023-09-03 20:57:14,401 saving best model 2023-09-03 20:57:15,722 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:57:22,857 epoch 3 - iter 44/447 - loss 0.09910014 - time (sec): 7.13 - samples/sec: 1142.88 - lr: 0.000044 - momentum: 0.000000 2023-09-03 20:57:29,811 epoch 3 - iter 88/447 - loss 0.09095220 - time (sec): 14.09 - samples/sec: 1136.57 - lr: 0.000043 - momentum: 0.000000 2023-09-03 20:57:37,844 epoch 3 - iter 132/447 - loss 0.09474706 - time (sec): 22.12 - samples/sec: 1119.14 - lr: 0.000043 - momentum: 0.000000 2023-09-03 20:57:44,926 epoch 3 - iter 176/447 - loss 0.09662773 - time (sec): 29.20 - samples/sec: 1132.33 - lr: 0.000042 - momentum: 0.000000 2023-09-03 20:57:52,164 epoch 3 - iter 220/447 - loss 0.09890834 - time (sec): 36.44 - samples/sec: 1126.96 - lr: 0.000042 - momentum: 0.000000 2023-09-03 20:57:59,695 epoch 3 - iter 264/447 - loss 0.09257574 - time (sec): 43.97 - samples/sec: 1133.04 - lr: 0.000041 - momentum: 0.000000 2023-09-03 20:58:07,414 epoch 3 - iter 308/447 - loss 0.09156175 - time (sec): 51.69 - samples/sec: 1127.34 - lr: 0.000041 - momentum: 0.000000 2023-09-03 20:58:15,315 epoch 3 - iter 352/447 - loss 0.09061217 - time (sec): 59.59 - samples/sec: 1119.14 - lr: 0.000040 - momentum: 0.000000 2023-09-03 20:58:23,229 epoch 3 - iter 396/447 - loss 0.08784546 - time (sec): 67.51 - samples/sec: 1118.91 - lr: 0.000040 - momentum: 0.000000 2023-09-03 20:58:30,739 epoch 3 - iter 440/447 - loss 0.08704201 - time (sec): 75.02 - samples/sec: 1121.66 - lr: 0.000039 - momentum: 0.000000 2023-09-03 20:58:33,106 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:58:33,107 EPOCH 3 done: loss 0.0860 - lr: 0.000039 2023-09-03 20:58:46,618 DEV : loss 0.13379663228988647 - f1-score (micro avg) 0.7175 2023-09-03 20:58:46,645 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:58:54,615 epoch 4 - iter 44/447 - loss 0.06277073 - time (sec): 7.97 - samples/sec: 1022.51 - lr: 0.000038 - momentum: 0.000000 2023-09-03 20:59:02,152 epoch 4 - iter 88/447 - loss 0.05648163 - time (sec): 15.51 - samples/sec: 1068.96 - lr: 0.000038 - momentum: 0.000000 2023-09-03 20:59:09,377 epoch 4 - iter 132/447 - loss 0.05312505 - time (sec): 22.73 - samples/sec: 1090.33 - lr: 0.000037 - momentum: 0.000000 2023-09-03 20:59:18,549 epoch 4 - iter 176/447 - loss 0.05349326 - time (sec): 31.90 - samples/sec: 1091.10 - lr: 0.000037 - momentum: 0.000000 2023-09-03 20:59:26,198 epoch 4 - iter 220/447 - loss 0.04992607 - time (sec): 39.55 - samples/sec: 1092.82 - lr: 0.000036 - momentum: 0.000000 2023-09-03 20:59:33,971 epoch 4 - iter 264/447 - loss 0.05119766 - time (sec): 47.33 - samples/sec: 1091.28 - lr: 0.000036 - momentum: 0.000000 2023-09-03 20:59:41,433 epoch 4 - iter 308/447 - loss 0.05149054 - time (sec): 54.79 - samples/sec: 1096.95 - lr: 0.000035 - momentum: 0.000000 2023-09-03 20:59:48,965 epoch 4 - iter 352/447 - loss 0.05063399 - time (sec): 62.32 - samples/sec: 1097.67 - lr: 0.000035 - momentum: 0.000000 2023-09-03 20:59:57,322 epoch 4 - iter 396/447 - loss 0.05013942 - time (sec): 70.68 - samples/sec: 1094.04 - lr: 0.000034 - momentum: 0.000000 2023-09-03 21:00:04,533 epoch 4 - iter 440/447 - loss 0.05169724 - time (sec): 77.89 - samples/sec: 1096.02 - lr: 0.000033 - momentum: 0.000000 2023-09-03 21:00:05,636 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:00:05,636 EPOCH 4 done: loss 0.0521 - lr: 0.000033 2023-09-03 21:00:19,119 DEV : loss 0.1692018061876297 - f1-score (micro avg) 0.7695 2023-09-03 21:00:19,153 saving best model 2023-09-03 21:00:20,479 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:00:28,391 epoch 5 - iter 44/447 - loss 0.03984379 - time (sec): 7.91 - samples/sec: 1069.76 - lr: 0.000033 - momentum: 0.000000 2023-09-03 21:00:35,671 epoch 5 - iter 88/447 - loss 0.03527843 - time (sec): 15.19 - samples/sec: 1089.96 - lr: 0.000032 - momentum: 0.000000 2023-09-03 21:00:43,033 epoch 5 - iter 132/447 - loss 0.03633554 - time (sec): 22.55 - samples/sec: 1107.96 - lr: 0.000032 - momentum: 0.000000 2023-09-03 21:00:50,223 epoch 5 - iter 176/447 - loss 0.03854755 - time (sec): 29.74 - samples/sec: 1107.05 - lr: 0.000031 - momentum: 0.000000 2023-09-03 21:00:58,991 epoch 5 - iter 220/447 - loss 0.03856388 - time (sec): 38.51 - samples/sec: 1094.62 - lr: 0.000031 - momentum: 0.000000 2023-09-03 21:01:06,149 epoch 5 - iter 264/447 - loss 0.03879315 - time (sec): 45.67 - samples/sec: 1098.02 - lr: 0.000030 - momentum: 0.000000 2023-09-03 21:01:13,548 epoch 5 - iter 308/447 - loss 0.03806475 - time (sec): 53.07 - samples/sec: 1100.83 - lr: 0.000030 - momentum: 0.000000 2023-09-03 21:01:22,543 epoch 5 - iter 352/447 - loss 0.03944462 - time (sec): 62.06 - samples/sec: 1097.56 - lr: 0.000029 - momentum: 0.000000 2023-09-03 21:01:30,581 epoch 5 - iter 396/447 - loss 0.03814469 - time (sec): 70.10 - samples/sec: 1101.77 - lr: 0.000028 - momentum: 0.000000 2023-09-03 21:01:38,343 epoch 5 - iter 440/447 - loss 0.03774412 - time (sec): 77.86 - samples/sec: 1096.09 - lr: 0.000028 - momentum: 0.000000 2023-09-03 21:01:39,351 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:01:39,351 EPOCH 5 done: loss 0.0374 - lr: 0.000028 2023-09-03 21:01:52,412 DEV : loss 0.17978209257125854 - f1-score (micro avg) 0.7549 2023-09-03 21:01:52,439 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:02:01,732 epoch 6 - iter 44/447 - loss 0.02980735 - time (sec): 9.29 - samples/sec: 1035.64 - lr: 0.000027 - momentum: 0.000000 2023-09-03 21:02:09,110 epoch 6 - iter 88/447 - loss 0.02423965 - time (sec): 16.67 - samples/sec: 1069.15 - lr: 0.000027 - momentum: 0.000000 2023-09-03 21:02:17,431 epoch 6 - iter 132/447 - loss 0.02298144 - time (sec): 24.99 - samples/sec: 1065.88 - lr: 0.000026 - momentum: 0.000000 2023-09-03 21:02:25,242 epoch 6 - iter 176/447 - loss 0.02273349 - time (sec): 32.80 - samples/sec: 1079.58 - lr: 0.000026 - momentum: 0.000000 2023-09-03 21:02:33,012 epoch 6 - iter 220/447 - loss 0.02157790 - time (sec): 40.57 - samples/sec: 1094.10 - lr: 0.000025 - momentum: 0.000000 2023-09-03 21:02:40,172 epoch 6 - iter 264/447 - loss 0.02048096 - time (sec): 47.73 - samples/sec: 1096.13 - lr: 0.000025 - momentum: 0.000000 2023-09-03 21:02:47,619 epoch 6 - iter 308/447 - loss 0.02034238 - time (sec): 55.18 - samples/sec: 1092.41 - lr: 0.000024 - momentum: 0.000000 2023-09-03 21:02:54,850 epoch 6 - iter 352/447 - loss 0.02168193 - time (sec): 62.41 - samples/sec: 1093.46 - lr: 0.000023 - momentum: 0.000000 2023-09-03 21:03:02,551 epoch 6 - iter 396/447 - loss 0.02256137 - time (sec): 70.11 - samples/sec: 1097.72 - lr: 0.000023 - momentum: 0.000000 2023-09-03 21:03:09,393 epoch 6 - iter 440/447 - loss 0.02303606 - time (sec): 76.95 - samples/sec: 1102.62 - lr: 0.000022 - momentum: 0.000000 2023-09-03 21:03:11,217 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:03:11,217 EPOCH 6 done: loss 0.0231 - lr: 0.000022 2023-09-03 21:03:24,374 DEV : loss 0.19026526808738708 - f1-score (micro avg) 0.7761 2023-09-03 21:03:24,400 saving best model 2023-09-03 21:03:25,705 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:03:33,900 epoch 7 - iter 44/447 - loss 0.01327631 - time (sec): 8.19 - samples/sec: 1122.36 - lr: 0.000022 - momentum: 0.000000 2023-09-03 21:03:43,494 epoch 7 - iter 88/447 - loss 0.01391578 - time (sec): 17.79 - samples/sec: 1066.78 - lr: 0.000021 - momentum: 0.000000 2023-09-03 21:03:51,315 epoch 7 - iter 132/447 - loss 0.01429568 - time (sec): 25.61 - samples/sec: 1079.50 - lr: 0.000021 - momentum: 0.000000 2023-09-03 21:03:59,158 epoch 7 - iter 176/447 - loss 0.01322758 - time (sec): 33.45 - samples/sec: 1099.43 - lr: 0.000020 - momentum: 0.000000 2023-09-03 21:04:07,980 epoch 7 - iter 220/447 - loss 0.01222787 - time (sec): 42.27 - samples/sec: 1080.35 - lr: 0.000020 - momentum: 0.000000 2023-09-03 21:04:15,077 epoch 7 - iter 264/447 - loss 0.01097556 - time (sec): 49.37 - samples/sec: 1079.67 - lr: 0.000019 - momentum: 0.000000 2023-09-03 21:04:21,966 epoch 7 - iter 308/447 - loss 0.01200888 - time (sec): 56.26 - samples/sec: 1085.28 - lr: 0.000018 - momentum: 0.000000 2023-09-03 21:04:29,651 epoch 7 - iter 352/447 - loss 0.01374890 - time (sec): 63.94 - samples/sec: 1083.72 - lr: 0.000018 - momentum: 0.000000 2023-09-03 21:04:36,475 epoch 7 - iter 396/447 - loss 0.01349475 - time (sec): 70.77 - samples/sec: 1089.46 - lr: 0.000017 - momentum: 0.000000 2023-09-03 21:04:43,497 epoch 7 - iter 440/447 - loss 0.01326615 - time (sec): 77.79 - samples/sec: 1093.14 - lr: 0.000017 - momentum: 0.000000 2023-09-03 21:04:44,921 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:04:44,921 EPOCH 7 done: loss 0.0131 - lr: 0.000017 2023-09-03 21:04:58,031 DEV : loss 0.20857642590999603 - f1-score (micro avg) 0.7897 2023-09-03 21:04:58,060 saving best model 2023-09-03 21:04:59,399 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:05:06,891 epoch 8 - iter 44/447 - loss 0.00956675 - time (sec): 7.49 - samples/sec: 1153.98 - lr: 0.000016 - momentum: 0.000000 2023-09-03 21:05:14,219 epoch 8 - iter 88/447 - loss 0.00759491 - time (sec): 14.82 - samples/sec: 1132.50 - lr: 0.000016 - momentum: 0.000000 2023-09-03 21:05:23,510 epoch 8 - iter 132/447 - loss 0.00798829 - time (sec): 24.11 - samples/sec: 1110.17 - lr: 0.000015 - momentum: 0.000000 2023-09-03 21:05:31,762 epoch 8 - iter 176/447 - loss 0.00858372 - time (sec): 32.36 - samples/sec: 1087.71 - lr: 0.000015 - momentum: 0.000000 2023-09-03 21:05:39,184 epoch 8 - iter 220/447 - loss 0.00883033 - time (sec): 39.78 - samples/sec: 1095.55 - lr: 0.000014 - momentum: 0.000000 2023-09-03 21:05:47,717 epoch 8 - iter 264/447 - loss 0.00944911 - time (sec): 48.32 - samples/sec: 1083.50 - lr: 0.000013 - momentum: 0.000000 2023-09-03 21:05:55,417 epoch 8 - iter 308/447 - loss 0.00948601 - time (sec): 56.02 - samples/sec: 1087.55 - lr: 0.000013 - momentum: 0.000000 2023-09-03 21:06:02,467 epoch 8 - iter 352/447 - loss 0.00892223 - time (sec): 63.07 - samples/sec: 1092.67 - lr: 0.000012 - momentum: 0.000000 2023-09-03 21:06:10,154 epoch 8 - iter 396/447 - loss 0.00886820 - time (sec): 70.75 - samples/sec: 1094.43 - lr: 0.000012 - momentum: 0.000000 2023-09-03 21:06:16,959 epoch 8 - iter 440/447 - loss 0.00915381 - time (sec): 77.56 - samples/sec: 1100.56 - lr: 0.000011 - momentum: 0.000000 2023-09-03 21:06:17,966 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:06:17,967 EPOCH 8 done: loss 0.0092 - lr: 0.000011 2023-09-03 21:06:31,579 DEV : loss 0.2286161482334137 - f1-score (micro avg) 0.7771 2023-09-03 21:06:31,605 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:06:39,659 epoch 9 - iter 44/447 - loss 0.00534548 - time (sec): 8.05 - samples/sec: 1015.04 - lr: 0.000011 - momentum: 0.000000 2023-09-03 21:06:48,777 epoch 9 - iter 88/447 - loss 0.00425359 - time (sec): 17.17 - samples/sec: 1019.60 - lr: 0.000010 - momentum: 0.000000 2023-09-03 21:06:56,849 epoch 9 - iter 132/447 - loss 0.00444618 - time (sec): 25.24 - samples/sec: 1032.27 - lr: 0.000010 - momentum: 0.000000 2023-09-03 21:07:04,488 epoch 9 - iter 176/447 - loss 0.00461089 - time (sec): 32.88 - samples/sec: 1047.40 - lr: 0.000009 - momentum: 0.000000 2023-09-03 21:07:11,516 epoch 9 - iter 220/447 - loss 0.00539607 - time (sec): 39.91 - samples/sec: 1071.49 - lr: 0.000008 - momentum: 0.000000 2023-09-03 21:07:18,585 epoch 9 - iter 264/447 - loss 0.00492824 - time (sec): 46.98 - samples/sec: 1083.02 - lr: 0.000008 - momentum: 0.000000 2023-09-03 21:07:25,897 epoch 9 - iter 308/447 - loss 0.00432453 - time (sec): 54.29 - samples/sec: 1086.25 - lr: 0.000007 - momentum: 0.000000 2023-09-03 21:07:33,042 epoch 9 - iter 352/447 - loss 0.00427809 - time (sec): 61.44 - samples/sec: 1093.30 - lr: 0.000007 - momentum: 0.000000 2023-09-03 21:07:41,918 epoch 9 - iter 396/447 - loss 0.00449438 - time (sec): 70.31 - samples/sec: 1095.67 - lr: 0.000006 - momentum: 0.000000 2023-09-03 21:07:49,889 epoch 9 - iter 440/447 - loss 0.00470024 - time (sec): 78.28 - samples/sec: 1089.96 - lr: 0.000006 - momentum: 0.000000 2023-09-03 21:07:50,912 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:07:50,913 EPOCH 9 done: loss 0.0052 - lr: 0.000006 2023-09-03 21:08:04,501 DEV : loss 0.22261452674865723 - f1-score (micro avg) 0.7777 2023-09-03 21:08:04,528 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:08:12,555 epoch 10 - iter 44/447 - loss 0.00479591 - time (sec): 8.03 - samples/sec: 1123.45 - lr: 0.000005 - momentum: 0.000000 2023-09-03 21:08:19,833 epoch 10 - iter 88/447 - loss 0.00658392 - time (sec): 15.30 - samples/sec: 1130.43 - lr: 0.000005 - momentum: 0.000000 2023-09-03 21:08:27,230 epoch 10 - iter 132/447 - loss 0.00460342 - time (sec): 22.70 - samples/sec: 1133.81 - lr: 0.000004 - momentum: 0.000000 2023-09-03 21:08:35,120 epoch 10 - iter 176/447 - loss 0.00429682 - time (sec): 30.59 - samples/sec: 1132.08 - lr: 0.000003 - momentum: 0.000000 2023-09-03 21:08:41,797 epoch 10 - iter 220/447 - loss 0.00420025 - time (sec): 37.27 - samples/sec: 1144.52 - lr: 0.000003 - momentum: 0.000000 2023-09-03 21:08:48,910 epoch 10 - iter 264/447 - loss 0.00362146 - time (sec): 44.38 - samples/sec: 1144.62 - lr: 0.000002 - momentum: 0.000000 2023-09-03 21:08:56,331 epoch 10 - iter 308/447 - loss 0.00361059 - time (sec): 51.80 - samples/sec: 1147.07 - lr: 0.000002 - momentum: 0.000000 2023-09-03 21:09:05,620 epoch 10 - iter 352/447 - loss 0.00336808 - time (sec): 61.09 - samples/sec: 1140.21 - lr: 0.000001 - momentum: 0.000000 2023-09-03 21:09:12,495 epoch 10 - iter 396/447 - loss 0.00329159 - time (sec): 67.97 - samples/sec: 1140.42 - lr: 0.000001 - momentum: 0.000000 2023-09-03 21:09:19,057 epoch 10 - iter 440/447 - loss 0.00311645 - time (sec): 74.53 - samples/sec: 1144.22 - lr: 0.000000 - momentum: 0.000000 2023-09-03 21:09:20,071 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:09:20,072 EPOCH 10 done: loss 0.0031 - lr: 0.000000 2023-09-03 21:09:32,827 DEV : loss 0.2274623066186905 - f1-score (micro avg) 0.7878 2023-09-03 21:09:33,320 ---------------------------------------------------------------------------------------------------- 2023-09-03 21:09:33,321 Loading model from best epoch ... 2023-09-03 21:09:35,181 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time 2023-09-03 21:09:45,092 Results: - F-score (micro) 0.7335 - F-score (macro) 0.6578 - Accuracy 0.5978 By class: precision recall f1-score support loc 0.8115 0.8523 0.8314 596 pers 0.6434 0.7477 0.6917 333 org 0.4839 0.4545 0.4687 132 prod 0.5690 0.5000 0.5323 66 time 0.7358 0.7959 0.7647 49 micro avg 0.7123 0.7560 0.7335 1176 macro avg 0.6487 0.6701 0.6578 1176 weighted avg 0.7104 0.7560 0.7316 1176 2023-09-03 21:09:45,092 ----------------------------------------------------------------------------------------------------