"""This script is used to get many posts from the desired subreddit(s)""" import requests import time import random import copy import pandas as pd """This script is used to get many posts from the desired subreddit(s)""" subreddit_list = [ "theredpillrebooted", "RedPillWomen", "Feminism", "marriedredpill", "TheBluePill", "PurplePillDebate", "RedPillWives", "askMRP", "ForeverAloneWomen", ] url_template = "https://www.reddit.com/r/{}/.json?t=all{}" headers = {"User-Agent": "Testing Bot Gundam Wing"} params = "" str_log = [] original_counter = 10000 counter = original_counter post_list = [] for subreddit in subreddit_list: while counter > 0: print(f"Getting posts with params: {params}") print("\n\n\n\n") url = url_template.format(subreddit, params) response = requests.get(url, headers=headers) if response.ok: data = response.json() posts = data["data"]["children"] print(f"Got {len(posts)} posts") for post in posts: pdata = post["data"] post_id = pdata["id"] title = pdata["title"] text = pdata.get("selftext") score = pdata["score"] author = pdata["author"] date = pdata["created_utc"] url = pdata.get("url_overridden_by_dest") print(f"{post_id}: {title} - {url}") # prints for debugging # print("Keys are ", pdata.keys()) # post_list.append( # { # "id": post_id, # "title": title, # "text": text, # "url": url, # "score": score, # "author": author, # "date": date, # "pdata": pdata, # } # ) post_list.append( [subreddit, post_id, title, text, url, score, author, date, pdata] ) print(f"Got {len(posts)} posts") try: params = "&after=" + data["data"]["after"] except: print( "No more posts, broke on ", subreddit, "with counter at ", counter ) # write this log to a txt file str_log.append( "No more posts, broke on " + subreddit + "with counter at " + str(counter) ) break counter -= 1 time.sleep(random.randint(1, 45)) else: print(f"Error: {response.status_code}") counter = original_counter params = "" # make a copy of the list post_list_copy = copy.deepcopy(post_list) # save the list to a csv file, as a backup # to avoid running the script again df = pd.DataFrame(post_list_copy) df.columns = [ "subreddit", "id", "title", "text", "url", "score", "author", "date", "pdata", ] df.to_csv("reddit_posts.csv", index=False) # Add useful features to the dataframe def pull_info_from_reddit_dict( dict, fields=[ "subreddit_subscribers", "num_comments", "ups", "downs", "upvote_ratio", "num_reports", "is_video", ], ): """This function takes a dictionary from the Reddit API and returns a list of the values for the fields specified""" return [dict.get(field, "Not Found") for field in fields] # Create a new lists of posts with the additional fields processed_posts = [] for post in post_list_copy: fields_to_add = pull_info_from_reddit_dict(post[8]) temp_post = post[:-1] + fields_to_add processed_posts.append(temp_post) # save the final csv df = pd.DataFrame( processed_posts, columns=[ "subreddit", "id", "title", "text", "url", "score", "author", "date", "subreddit_subscribers", "num_comments", "ups", "downs", "upvote_ratio", "num_reports", "is_video", ], ) # columns that cannot be empty,so drop rows df = df.dropna(subset=["subreddit"]) df = df.dropna(subset=["title"]) df = df.drop(columns=["num_reports"]) # drop num_reports, always empty # cleaning to make colab importing the dataset through huggingface work values = { "id": "NOTEXT", "text": "NOTEXT", "url": "NOTEXT", "score": 0, "date": 0.0, "subreddit_subscribers": 0, "num_comments": 0, "ups": 0, "downs": 0, "upvote_ratio": 0.0, "is_video": "False", } df.fillna(value=values, inplace=True) df = df[df["subreddit"].isin(subreddit_list)] df.to_csv("reddit_posts_fm.csv", index=False)