{ "default": { "description": "The Stanford Sentiment Treebank consists of sentences from movie reviews and\nhuman annotations of their sentiment. The task is to predict the sentiment of a\ngiven sentence. We use the two-way (positive/negative) class split, and use only\nsentence-level labels.\n", "citation": "@inproceedings{socher2013recursive,\n title={Recursive deep models for semantic compositionality over a sentiment treebank},\n author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n pages={1631--1642},\n year={2013}\n}\n", "homepage": "https://nlp.stanford.edu/sentiment/", "license": "Unknown", "features": { "idx": { "dtype": "int32", "_type": "Value" }, "sentence": { "dtype": "string", "_type": "Value" }, "label": { "names": [ "negative", "positive" ], "_type": "ClassLabel" } }, "builder_name": "sst2", "dataset_name": "sst2", "config_name": "default", "version": { "version_str": "2.0.0", "major": 2, "minor": 0, "patch": 0 }, "splits": { "train": { "name": "train", "num_bytes": 4681603, "num_examples": 67349, "dataset_name": null }, "validation": { "name": "validation", "num_bytes": 106252, "num_examples": 872, "dataset_name": null }, "test": { "name": "test", "num_bytes": 216640, "num_examples": 1821, "dataset_name": null } }, "download_size": 3331058, "dataset_size": 5004495, "size_in_bytes": 8335553 } }