# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """IMDB movie reviews dataset.""" import datasets from datasets.tasks import TextClassification _DESCRIPTION = """\ Large Movie Review Dataset. This is a dataset for binary sentiment classification containing substantially \ more data than previous benchmark datasets. We provide a set of 25,000 highly \ polar movie reviews for training, and 25,000 for testing. There is additional \ unlabeled data for use as well.\ """ _CITATION = """\ @InProceedings{maas-EtAl:2011:ACL-HLT2011, author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher}, title = {Learning Word Vectors for Sentiment Analysis}, booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies}, month = {June}, year = {2011}, address = {Portland, Oregon, USA}, publisher = {Association for Computational Linguistics}, pages = {142--150}, url = {http://www.aclweb.org/anthology/P11-1015} } """ _DOWNLOAD_URL = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" class IMDBReviewsConfig(datasets.BuilderConfig): """BuilderConfig for IMDBReviews.""" def __init__(self, **kwargs): """BuilderConfig for IMDBReviews. Args: **kwargs: keyword arguments forwarded to super. """ super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) class Imdb(datasets.GeneratorBasedBuilder): """IMDB movie reviews dataset.""" BUILDER_CONFIGS = [ IMDBReviewsConfig( name="plain_text", description="Plain text", ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( {"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])} ), supervised_keys=None, homepage="http://ai.stanford.edu/~amaas/data/sentiment/", citation=_CITATION, task_templates=[TextClassification(text_column="text", label_column="label")], ) def _split_generators(self, dl_manager): archive = dl_manager.download(_DOWNLOAD_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train"} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "test"} ), datasets.SplitGenerator( name=datasets.Split("unsupervised"), gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train", "labeled": False}, ), ] def _generate_examples(self, files, split, labeled=True): """Generate aclImdb examples.""" # For labeled examples, extract the label from the path. if labeled: label_mapping = {"pos": 1, "neg": 0} for path, f in files: if path.startswith(f"aclImdb/{split}"): label = label_mapping.get(path.split("/")[2]) if label is not None: yield path, {"text": f.read().decode("utf-8"), "label": label} else: for path, f in files: if path.startswith(f"aclImdb/{split}"): if path.split("/")[2] == "unsup": yield path, {"text": f.read().decode("utf-8"), "label": -1}