Datasets:

Task Categories: question-answering
Languages: Korean
Multilinguality: monolingual
Size Categories: 10K<n<100K
Language Creators: found
Annotations Creators: crowdsourced
system commited on
Commit
743507f
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - ko
8
+ licenses:
9
+ - cc-by-nd-2-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - extended|squad_kor_v1
16
+ - original
17
+ task_categories:
18
+ - question-answering
19
+ task_ids:
20
+ - extractive-qa
21
+ ---
22
+
23
+ # Dataset Card for KorQuAD v2.1
24
+
25
+ ## Table of Contents
26
+ - [Dataset Description](#dataset-description)
27
+ - [Dataset Summary](#dataset-summary)
28
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
29
+ - [Languages](#languages)
30
+ - [Dataset Structure](#dataset-structure)
31
+ - [Data Instances](#data-instances)
32
+ - [Data Fields](#data-instances)
33
+ - [Data Splits](#data-instances)
34
+ - [Dataset Creation](#dataset-creation)
35
+ - [Curation Rationale](#curation-rationale)
36
+ - [Source Data](#source-data)
37
+ - [Annotations](#annotations)
38
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
39
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
40
+ - [Social Impact of Dataset](#social-impact-of-dataset)
41
+ - [Discussion of Biases](#discussion-of-biases)
42
+ - [Other Known Limitations](#other-known-limitations)
43
+ - [Additional Information](#additional-information)
44
+ - [Dataset Curators](#dataset-curators)
45
+ - [Licensing Information](#licensing-information)
46
+ - [Citation Information](#citation-information)
47
+
48
+ ## Dataset Description
49
+
50
+ - [**Homepage**](https://korquad.github.io/)
51
+ - [**Repository**](https://github.com/korquad/korquad.github.io/tree/master/dataset)
52
+ - [**Paper**](https://korquad.github.io/dataset/KorQuAD_2.0/KorQuAD_2.0_paper.pdf)
53
+
54
+ ### Dataset Summary
55
+
56
+ KorQuAD 2.0 is a Korean question and answering dataset consisting of a total of 100,000+ pairs. There are three major differences from KorQuAD 1.0, which is the standard Korean Q & A data. The first is that a given document is a whole Wikipedia page, not just one or two paragraphs. Second, because the document also contains tables and lists, it is necessary to understand the document structured with HTML tags. Finally, the answer can be a long text covering not only word or phrase units, but paragraphs, tables, and lists.
57
+
58
+ ### Supported Tasks and Leaderboards
59
+
60
+ `question-answering`
61
+
62
+ ### Languages
63
+
64
+ Korean
65
+
66
+ ## Dataset Structure
67
+
68
+ Follows the standart SQuAD format. There is only 1 answer per question
69
+
70
+ ### Data Instances
71
+
72
+ An example from the data set looks as follows:
73
+ ```py
74
+ {'answer': {'answer_start': 3873,
75
+ 'html_answer_start': 16093,
76
+ 'text': '20,890 표'},
77
+ 'context': '<!DOCTYPE html>\n<html>\n<head>\n<meta>\n<title>심규언 - 위키백과, 우리 모두의 백과사전</title>\n\n\n<link>\n.....[omitted]',
78
+ 'id': '36615',
79
+ 'question': '심규언은 17대 지방 선거에서 몇 표를 득표하였는가?',
80
+ 'raw_html': '<!DOCTYPE html>\n<html c ...[omitted]',
81
+ 'title': '심규언',
82
+ 'url': 'https://ko.wikipedia.org/wiki/심규언'}
83
+ ```
84
+
85
+ ### Data Fields
86
+ ```py
87
+ {'id': Value(dtype='string', id=None),
88
+ 'title': Value(dtype='string', id=None),
89
+ 'context': Value(dtype='string', id=None),
90
+ 'question': Value(dtype='string', id=None),
91
+ 'answer': {'text': Value(dtype='string', id=None),
92
+ 'answer_start': Value(dtype='int32', id=None),
93
+ 'html_answer_start': Value(dtype='int32', id=None)},
94
+ 'url': Value(dtype='string', id=None),
95
+ 'raw_html': Value(dtype='string', id=None)}
96
+ ```
97
+ ### Data Splits
98
+
99
+ - Train : 83486
100
+ - Validation: 10165
101
+
102
+ ## Dataset Creation
103
+
104
+ ### Curation Rationale
105
+
106
+ [More Information Needed]
107
+
108
+ ### Source Data
109
+
110
+ Wikipedia
111
+
112
+ #### Initial Data Collection and Normalization
113
+
114
+ [More Information Needed]
115
+
116
+ #### Who are the source language producers?
117
+
118
+ [More Information Needed]
119
+
120
+ ### Annotations
121
+
122
+ #### Annotation process
123
+
124
+ [More Information Needed]
125
+
126
+ #### Who are the annotators?
127
+
128
+ [More Information Needed]
129
+
130
+ ### Personal and Sensitive Information
131
+
132
+ [More Information Needed]
133
+
134
+ ## Considerations for Using the Data
135
+
136
+ ### Social Impact of Dataset
137
+
138
+ [More Information Needed]
139
+
140
+ ### Discussion of Biases
141
+
142
+ [More Information Needed]
143
+
144
+ ### Other Known Limitations
145
+
146
+ [More Information Needed]
147
+
148
+ ## Additional Information
149
+
150
+ ### Dataset Curators
151
+
152
+ [More Information Needed]
153
+
154
+ ### Licensing Information
155
+
156
+ [CC BY-ND 2.0 KR](https://creativecommons.org/licenses/by-nd/2.0/kr/deed.en)
157
+
158
+ ### Citation Information
159
+ ```
160
+ @article{NODE09353166,
161
+ author={Youngmin Kim,Seungyoung Lim;Hyunjeong Lee;Soyoon Park;Myungji Kim},
162
+ title={{KorQuAD 2.0: Korean QA Dataset for Web Document Machine Comprehension}},
163
+ booltitle={{Journal of KIISE 제47권 제6호}},
164
+ journal={{Journal of KIISE}},
165
+ volume={{47}},
166
+ issue={{6}},
167
+ publisher={The Korean Institute of Information Scientists and Engineers},
168
+ year={2020},
169
+ ISSN={{2383-630X}},
170
+ pages={577-586},
171
+ url={http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09353166}}
172
+ ```
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
1
+ {"squad_kor_v2": {"description": "KorQuAD 2.0 is a Korean question and answering dataset consisting of a total of 100,000+ pairs. There are three major differences from KorQuAD 1.0, which is the standard Korean Q & A data. The first is that a given document is a whole Wikipedia page, not just one or two paragraphs. Second, because the document also contains tables and lists, it is necessary to understand the document structured with HTML tags. Finally, the answer can be a long text covering not only word or phrase units, but paragraphs, tables, and lists. As a baseline model, BERT Multilingual is used, released by Google as an open source. It shows 46.0% F1 score, a very low score compared to 85.7% of the human F1 score. It indicates that this data is a challenging task. Additionally, we increased the performance by no-answer data augmentation. Through the distribution of this data, we intend to extend the limit of MRC that was limited to plain text to real world tasks of various lengths and formats.\n", "citation": "@article{NODE09353166,\n author={Youngmin Kim,Seungyoung Lim;Hyunjeong Lee;Soyoon Park;Myungji Kim},\n title={{KorQuAD 2.0: Korean QA Dataset for Web Document Machine Comprehension}},\n booltitle={{Journal of KIISE \uc81c47\uad8c \uc81c6\ud638}},\n journal={{Journal of KIISE}},\n volume={{47}},\n issue={{6}},\n publisher={The Korean Institute of Information Scientists and Engineers},\n year={2020},\n ISSN={{2383-630X}},\n pages={577-586},\n url={http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09353166}}\n", "homepage": "https://korquad.github.io/", "license": "CC BY-ND 2.0 KR", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}, "html_answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "raw_html": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "squad_kor_v2", "config_name": "squad_kor_v2", "version": {"version_str": "2.1.0", "description": null, "major": 2, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 17983434492, "num_examples": 83486, "dataset_name": "squad_kor_v2"}, "validation": {"name": "validation", "num_bytes": 2230543100, "num_examples": 10165, "dataset_name": "squad_kor_v2"}}, "download_checksums": {"https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_00.zip": {"num_bytes": 96161084, "checksum": "98918d10e3e08bf6b34b50d17cd7f7438d5a577a8089d02698d16a151424a36a"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_01.zip": {"num_bytes": 92163603, "checksum": "0a8a59ee82e92e9509c5dbf7d98a31c007a3693afb818e37c60ddacf7f48c4b3"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_02.zip": {"num_bytes": 91681447, "checksum": "7035a35daac0c210b4754fc6a2885442929754db35e33b40d7c912706c66b9bc"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_03.zip": {"num_bytes": 94792676, "checksum": "4a61272d13e535f73fa20f2d1619b895adb763d8fa7cf02d813b733e7f702562"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_04.zip": {"num_bytes": 94470762, "checksum": "35834a74b3486eaa32712c689bccaab0c841c3ee252560e754245d3ed89e1c3a"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_05.zip": {"num_bytes": 93427959, "checksum": "5ea9b2975451c5a67bc172690a56a6e7a9e87b4001d3d1d684cb1336958a3a3b"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_06.zip": {"num_bytes": 93224892, "checksum": "87872acd46c2a8291a176826ad7eb23f3a6cf1db05bb27566d2eac1199a9091b"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_07.zip": {"num_bytes": 92550803, "checksum": "a615c0ebba60fc9b55fa602973d504f76d0273592c22f63b7f202655c1bb10bf"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_08.zip": {"num_bytes": 93684404, "checksum": "fa3955e23eab859819990edde3dd23308740cf94c3839fb538f30b1126117a39"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_09.zip": {"num_bytes": 94028022, "checksum": "b3b7ec508fbacaf6a5c12065e1d061cbfd8990bf2ae4c940a0a8d841294c2c1c"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_10.zip": {"num_bytes": 93432479, "checksum": "b7e8e44e43ec63514265e2202f73a4a6ce46f7226cc5662efc6a2ab92161a462"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_11.zip": {"num_bytes": 94500610, "checksum": "f6483e1e4b2577603e4fc881ec1651ca2ea5764a4b0f7e5eb59007ed9cc4bbae"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_12.zip": {"num_bytes": 99301520, "checksum": "84c4b6391a07bc1fdcc70d7194bda0e65edc796ae9b4e184a58c58d6973af7ad"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/dev/KorQuAD_2.1_dev_00.zip": {"num_bytes": 93536216, "checksum": "4a0b25f896f333dc470e87b83cef874a9f7ea9a3df4c83f5ce8d5de6d71b07db"}, "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/dev/KorQuAD_2.1_dev_01.zip": {"num_bytes": 56806828, "checksum": "bf76fe7c684409151f92eacc56d551d0471477c47959b916c002ae39666caf59"}}, "download_size": 1373763305, "post_processing_size": null, "dataset_size": 20213977592, "size_in_bytes": 21587740897}}
dummy/squad_kor_v2/2.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49d312db185274c99426ad0933495fbf5e5dd3b22d93297579248991616009dd
3
+ size 36392
squad_kor_v2.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """KorQuAD v2.1:The Korean Question Answering Dataset"""
17
+
18
+ from __future__ import absolute_import, division, print_function
19
+
20
+ import json
21
+ import os
22
+
23
+ import datasets
24
+
25
+
26
+ _CITATION = """\
27
+ @article{NODE09353166,
28
+ author={Youngmin Kim,Seungyoung Lim;Hyunjeong Lee;Soyoon Park;Myungji Kim},
29
+ title={{KorQuAD 2.0: Korean QA Dataset for Web Document Machine Comprehension}},
30
+ booltitle={{Journal of KIISE 제47권 제6호}},
31
+ journal={{Journal of KIISE}},
32
+ volume={{47}},
33
+ issue={{6}},
34
+ publisher={The Korean Institute of Information Scientists and Engineers},
35
+ year={2020},
36
+ ISSN={{2383-630X}},
37
+ pages={577-586},
38
+ url={http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09353166}}
39
+ """
40
+
41
+ _DESCRIPTION = """\
42
+ KorQuAD 2.0 is a Korean question and answering dataset consisting of a total of 100,000+ pairs. There are three major differences from KorQuAD 1.0, which is the standard Korean Q & A data. The first is that a given document is a whole Wikipedia page, not just one or two paragraphs. Second, because the document also contains tables and lists, it is necessary to understand the document structured with HTML tags. Finally, the answer can be a long text covering not only word or phrase units, but paragraphs, tables, and lists. As a baseline model, BERT Multilingual is used, released by Google as an open source. It shows 46.0% F1 score, a very low score compared to 85.7% of the human F1 score. It indicates that this data is a challenging task. Additionally, we increased the performance by no-answer data augmentation. Through the distribution of this data, we intend to extend the limit of MRC that was limited to plain text to real world tasks of various lengths and formats.
43
+ """
44
+ _HOMEPAGE = "https://korquad.github.io/"
45
+ _LICENSE = "CC BY-ND 2.0 KR"
46
+
47
+ _URL = "https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1"
48
+ _URLS = {
49
+ "train": [
50
+ _URL + "/train/KorQuAD_2.1_train_00.zip",
51
+ _URL + "/train/KorQuAD_2.1_train_01.zip",
52
+ _URL + "/train/KorQuAD_2.1_train_02.zip",
53
+ _URL + "/train/KorQuAD_2.1_train_03.zip",
54
+ _URL + "/train/KorQuAD_2.1_train_04.zip",
55
+ _URL + "/train/KorQuAD_2.1_train_05.zip",
56
+ _URL + "/train/KorQuAD_2.1_train_06.zip",
57
+ _URL + "/train/KorQuAD_2.1_train_07.zip",
58
+ _URL + "/train/KorQuAD_2.1_train_08.zip",
59
+ _URL + "/train/KorQuAD_2.1_train_09.zip",
60
+ _URL + "/train/KorQuAD_2.1_train_10.zip",
61
+ _URL + "/train/KorQuAD_2.1_train_11.zip",
62
+ _URL + "/train/KorQuAD_2.1_train_12.zip",
63
+ ],
64
+ "validation": [_URL + "/dev/KorQuAD_2.1_dev_00.zip", _URL + "/dev/KorQuAD_2.1_dev_01.zip"],
65
+ }
66
+
67
+
68
+ class SquadKorV2(datasets.GeneratorBasedBuilder):
69
+ """KorQuAD 2.1 dataset"""
70
+
71
+ VERSION = datasets.Version("2.1.0")
72
+ BUILDER_CONFIGS = [
73
+ datasets.BuilderConfig(name="squad_kor_v2", version=VERSION, description=_DESCRIPTION),
74
+ ]
75
+
76
+ def _info(self):
77
+ return datasets.DatasetInfo(
78
+ description=_DESCRIPTION,
79
+ features=datasets.Features(
80
+ {
81
+ "id": datasets.Value("string"),
82
+ "title": datasets.Value("string"),
83
+ "context": datasets.Value("string"),
84
+ "question": datasets.Value("string"),
85
+ "answer": datasets.Features(
86
+ {
87
+ "text": datasets.Value("string"),
88
+ "answer_start": datasets.Value("int32"),
89
+ "html_answer_start": datasets.Value("int32"),
90
+ }
91
+ ),
92
+ "url": datasets.Value("string"),
93
+ "raw_html": datasets.Value("string"),
94
+ }
95
+ ),
96
+ supervised_keys=None,
97
+ homepage=_HOMEPAGE,
98
+ license=_LICENSE,
99
+ citation=_CITATION,
100
+ )
101
+
102
+ def _split_generators(self, dl_manager):
103
+ """Returns SplitGenerators."""
104
+ # download and extract URLs
105
+ urls_to_download = _URLS
106
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
107
+
108
+ return [
109
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"dirs": downloaded_files["train"]}),
110
+ datasets.SplitGenerator(
111
+ name=datasets.Split.VALIDATION, gen_kwargs={"dirs": downloaded_files["validation"]}
112
+ ),
113
+ ]
114
+
115
+ def _generate_examples(self, dirs):
116
+ """Yields examples."""
117
+
118
+ for d in dirs:
119
+ filepaths = sorted(os.scandir(d), key=lambda x: x.name)
120
+ for filepath in filepaths:
121
+ with open(filepath, encoding="utf-8") as f:
122
+ squad = json.load(f)
123
+ for example in squad["data"]:
124
+ title = example.get("title", "").strip()
125
+ url = example.get("url", "").strip()
126
+ raw_html = example.get("raw_html", "").strip()
127
+ context = example["context"].strip()
128
+ for qa in example["qas"]:
129
+ question = qa["question"].strip()
130
+ answer = qa["answer"]
131
+ id_ = qa["id"]
132
+
133
+ answer_start = answer["answer_start"]
134
+ html_answer_start = answer["html_answer_start"]
135
+ answer_text = answer["text"].strip()
136
+
137
+ yield id_, {
138
+ "title": title,
139
+ "context": context,
140
+ "question": question,
141
+ "id": id_,
142
+ "answer": {
143
+ "answer_start": answer_start,
144
+ "html_answer_start": html_answer_start,
145
+ "text": answer_text,
146
+ },
147
+ "url": url,
148
+ "raw_html": raw_html,
149
+ }