# Human variants A curated set of variants from three sources: ClinVar, OMIM and gnomAD. ## Data sources **ClinVar**: Missense variants considered "Pathogenic" by human labelers. **OMIM**: Regulatory variants considered "Pathogenic" by human labelers, curated in [this paper](https://doi.org/10.1016/j.ajhg.2016.07.005). **gnomAD**: All common variants (MAF > 5%) as well as an equally-sized subset of rare variants (MAC=1). Only autosomes are included. ## Usage ```python from datasets import load_dataset dataset = load_dataset("songlab/human_variants", split="test") ``` Subset - ClinVar Pathogenic vs. gnomAD common (missense) (can specify `num_proc` to speed up): ```python dataset = dataset.filter(lambda v: v["source"]=="ClinVar" or (v["label"]=="Common" and "missense" in v["consequence"])) ``` Subset - OMIM Pathogenic vs. gnomAD common (regulatory): ```python cs = ["5_prime_UTR", "upstream_gene", "intergenic", "3_prime_UTR", "non_coding_transcript_exon"] dataset = dataset.filter(lambda v: v["source"]=="OMIM" or (v["label"]=="Common" and "missense" not in v["consequence"] and any([c in v["consequence"] for c in cs]))) ``` Subset - gnomAD rare vs. gnomAD common: ```python dataset = dataset.filter(lambda v: v["source"]=="gnomAD") ```