# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Sample Generate GPT""" import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) import torch import megatron.training from megatron import get_args from megatron import print_rank_0 from megatron.core import mpu from megatron.checkpointing import load_checkpoint import megatron.initialize from megatron.model import GPTModel from megatron.text_generation_server import MegatronServer from megatron.text_generation import generate_and_post_process from megatron.text_generation import beam_search_and_post_process from megatron.model import ModelType def model_provider(pre_process=True, post_process=True): """Build the model.""" print_rank_0('building GPT model ...') model = GPTModel(num_tokentypes=0, parallel_output=False, pre_process=pre_process, post_process=post_process) return model def add_text_generate_args(parser): group = parser.add_argument_group(title='text generation') group.add_argument("--temperature", type=float, default=1.0, help='Sampling temperature.') group.add_argument("--top_p", type=float, default=0.0, help='Top p sampling.') group.add_argument("--top_k", type=int, default=0, help='Top k sampling.') group.add_argument("--out_seq_length", type=int, default=1024, help='Size of the output generated text.') return parser if __name__ == "__main__": megatron.initialize.initialize_megatron(extra_args_provider=add_text_generate_args, args_defaults={'tokenizer_type': 'GPT2BPETokenizer', 'no_load_rng': True, 'no_load_optim': True}) args = get_args() if args.num_layers_per_virtual_pipeline_stage is not None: print("Interleaved pipeline schedule is not yet supported for text generation.") exit() # Set up model and load checkpoint model_type = ModelType.encoder_or_decoder model = megatron.training.get_model(model_provider, model_type, wrap_with_ddp=False, args=args) if args.load is not None: _ = load_checkpoint(model, None, None) assert len(model) == 1, "Above condition should have caught this" model = model[0] if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0: server = MegatronServer(model) server.run("0.0.0.0") while True: choice = torch.cuda.LongTensor(1) torch.distributed.broadcast(choice, 0) if choice[0].item() == 0: try: generate_and_post_process(model) except ValueError as ve: pass elif choice[0].item() == 1: try: beam_search_and_post_process(model) except ValueError as ve: pass