# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Race.""" from megatron import get_args from megatron import print_rank_0 from megatron import get_tokenizer from megatron.model.multiple_choice import MultipleChoice import tasks.eval_utils import tasks.finetune_utils from tasks.race.data import RaceDataset from megatron.model import ModelType def train_valid_datasets_provider(): """Provide train and validation datasets.""" args = get_args() tokenizer = get_tokenizer() train_dataset = RaceDataset('training', args.train_data, tokenizer, args.seq_length) valid_dataset = RaceDataset('validation', args.valid_data, tokenizer, args.seq_length) return train_dataset, valid_dataset def model_provider(pre_process=True, post_process=True): """Build the model.""" model_type = ModelType.encoder_or_decoder print_rank_0('building multichoice model for RACE ...') model = MultipleChoice(num_tokentypes=2, pre_process=pre_process, post_process=post_process, model_type=model_type) return model def metrics_func_provider(): """Privde metrics callback function.""" args = get_args() tokenizer = get_tokenizer() def single_dataset_provider(datapath): name = datapath.split('RACE')[-1].strip('/').replace('/', '-') return RaceDataset(name, [datapath], tokenizer, args.seq_length) return tasks.eval_utils.accuracy_func_provider(single_dataset_provider) def main(): model_type = ModelType.encoder_or_decoder tasks.finetune_utils.finetune(train_valid_datasets_provider, model_provider, model_type, end_of_epoch_callback_provider=metrics_func_provider)