# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """ Tasks data utility.""" import re import numpy as np def clean_text(text): """Remove new lines and multiple spaces and adjust end of sentence dot.""" text = text.replace("\n", " ") text = re.sub(r'\s+', ' ', text) for _ in range(3): text = text.replace(' . ', '. ') return text def build_sample(ids, types, paddings, label, unique_id): """Convert to numpy and return a sample consumed by the batch producer.""" ids_np = np.array(ids, dtype=np.int64) types_np = np.array(types, dtype=np.int64) paddings_np = np.array(paddings, dtype=np.int64) sample = ({'text': ids_np, 'types': types_np, 'padding_mask': paddings_np, 'label': int(label), 'uid': int(unique_id)}) return sample def build_tokens_types_paddings_from_text(text_a, text_b, tokenizer, max_seq_length): """Build token types and paddings, trim if needed, and pad if needed.""" text_a_ids = tokenizer.tokenize(text_a) text_b_ids = None if text_b is not None: text_b_ids = tokenizer.tokenize(text_b) return build_tokens_types_paddings_from_ids(text_a_ids, text_b_ids, max_seq_length, tokenizer.cls, tokenizer.sep, tokenizer.pad) def build_tokens_types_paddings_from_ids(text_a_ids, text_b_ids, max_seq_length, cls_id, sep_id, pad_id): """Build token types and paddings, trim if needed, and pad if needed.""" ids = [] types = [] paddings = [] # [CLS]. ids.append(cls_id) types.append(0) paddings.append(1) # A. len_text_a = len(text_a_ids) ids.extend(text_a_ids) types.extend([0] * len_text_a) paddings.extend([1] * len_text_a) # [SEP]. ids.append(sep_id) types.append(0) paddings.append(1) # B. if text_b_ids is not None: len_text_b = len(text_b_ids) ids.extend(text_b_ids) types.extend([1] * len_text_b) paddings.extend([1] * len_text_b) # Cap the size. trimmed = False if len(ids) >= max_seq_length: max_seq_length_m1 = max_seq_length - 1 ids = ids[0:max_seq_length_m1] types = types[0:max_seq_length_m1] paddings = paddings[0:max_seq_length_m1] trimmed = True # [SEP]. if (text_b_ids is not None) or trimmed: ids.append(sep_id) if text_b_ids is None: types.append(0) else: types.append(1) paddings.append(1) # Padding. padding_length = max_seq_length - len(ids) if padding_length > 0: ids.extend([pad_id] * padding_length) types.extend([pad_id] * padding_length) paddings.extend([0] * padding_length) return ids, types, paddings