# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Megatron tokenizers.""" from abc import ABC from abc import abstractmethod from .bert_tokenization import FullTokenizer as FullBertTokenizer from .gpt2_tokenization import GPT2Tokenizer def build_tokenizer(args): """Initialize tokenizer.""" if args.rank == 0: print('> building {} tokenizer ...'.format(args.tokenizer_type), flush=True) if args.tokenizer_type != 'FalconTokenizer': assert args.vocab_file is not None # Select and instantiate the tokenizer. if args.tokenizer_type == 'BertWordPieceLowerCase': tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file, lower_case=True, vocab_extra_ids=args.vocab_extra_ids) elif args.tokenizer_type == 'BertWordPieceCase': tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file, lower_case=False, vocab_extra_ids=args.vocab_extra_ids) elif args.tokenizer_type == 'GPT2BPETokenizer': assert args.merge_file is not None tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file) elif args.tokenizer_type == 'SentencePieceTokenizer': tokenizer = _SentencePieceTokenizer(args.vocab_file, vocab_extra_ids=args.vocab_extra_ids, vocab_extra_ids_list=args.vocab_extra_ids_list, new_tokens=args.new_tokens) elif args.tokenizer_type == 'FalconTokenizer': tokenizer = _FalconTokenizer(vocab_extra_ids_list=args.vocab_extra_ids_list, new_tokens=args.new_tokens) elif args.tokenizer_type == "PretrainedFromHF": assert args.vocab_file is not None # prevent transformers from logging info and warnings on each rank import transformers import logging if args.rank == 0: transformers.utils.logging.set_verbosity(logging.INFO) else: # shut the warnings on replicas transformers.utils.logging.set_verbosity(logging.ERROR) if args.rank == 0: print(" vocab file is un-used. loading tokenizer from pre-trained model") tokenizer = _AutoTokenizer(args.vocab_file, vocab_extra_ids=args.vocab_extra_ids) else: raise NotImplementedError('{} tokenizer is not ' 'implemented.'.format(args.tokenizer_type)) # Add vocab size. args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args) return tokenizer def _vocab_size_with_padding(orig_vocab_size, args): """Pad vocab size so it is divisible by model parallel size and still having GPU friendly size.""" after = orig_vocab_size multiple = args.make_vocab_size_divisible_by * \ args.tensor_model_parallel_size while (after % multiple) != 0: after += 1 if args.rank == 0: print(' > padded vocab (size: {}) with {} dummy tokens ' '(new size: {})'.format( orig_vocab_size, after - orig_vocab_size, after), flush=True) return after class AbstractTokenizer(ABC): """Abstract class for tokenizer.""" def __init__(self, name): self.name = name super().__init__() @property @abstractmethod def vocab_size(self): pass @property @abstractmethod def vocab(self): """Dictionary from vocab text token to id token.""" pass @property @abstractmethod def inv_vocab(self): """Dictionary from vocab id token to text token.""" pass @abstractmethod def tokenize(self, text): pass def detokenize(self, token_ids): raise NotImplementedError('detokenizer is not implemented for {} ' 'tokenizer'.format(self.name)) @property def cls(self): raise NotImplementedError('CLS is not provided for {} ' 'tokenizer'.format(self.name)) @property def sep(self): raise NotImplementedError('SEP is not provided for {} ' 'tokenizer'.format(self.name)) @property def pad(self): raise NotImplementedError('PAD is not provided for {} ' 'tokenizer'.format(self.name)) @property def eod(self): raise NotImplementedError('EOD is not provided for {} ' 'tokenizer'.format(self.name)) @property def mask(self): raise NotImplementedError('MASK is not provided for {} ' 'tokenizer'.format(self.name)) class _BertWordPieceTokenizer(AbstractTokenizer): """Original BERT wordpiece tokenizer.""" def __init__(self, vocab_file, lower_case=True, vocab_extra_ids=0): if lower_case: name = 'BERT Lower Case' else: name = 'BERT Upper Case' super().__init__(name) self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case) self.cls_id = self.tokenizer.vocab['[CLS]'] self.sep_id = self.tokenizer.vocab['[SEP]'] self.pad_id = self.tokenizer.vocab['[PAD]'] self.mask_id = self.tokenizer.vocab['[MASK]'] self._additional_special_tokens = [] # (dsachan) Add BOS and EOS tokens SPECIAL_TOKENS = {'eos_token': '[EOS]', 'bos_token': '[BOS]'} self._bos_token = '[BOS]' self.add_token(self._bos_token) self._bos_token_id = self.vocab.get(self._bos_token) self._eos_token = '[EOS]' self.add_token(self._eos_token) self._eos_token_id = self.vocab.get(self._eos_token) # (dsachan) Add additional special tokens # These can be used as sentinel tokens in T5 model inputs additional_special_tokens = [] additional_special_tokens.extend( ["".format(i) for i in range(vocab_extra_ids)]) self.add_additional_special_tokens(additional_special_tokens) def add_token(self, token): if token not in self.vocab: self.inv_vocab[self.vocab_size] = token # self.vocab_size comes from len(vocab) # and it will increase as we add elements self.vocab[token] = self.vocab_size def add_additional_special_tokens(self, tokens_list): setattr(self, "additional_special_tokens", tokens_list) for value in tokens_list: self.add_token(value) @property def vocab_size(self): return self.tokenizer.vocab_size() @property def vocab(self): return self.tokenizer.vocab @property def inv_vocab(self): return self.tokenizer.inv_vocab def tokenize(self, text): text_tokens = self.tokenizer.tokenize(text) return self.tokenizer.convert_tokens_to_ids(text_tokens) def decode(self, ids): tokens = self.tokenizer.convert_ids_to_tokens(ids) return self.tokenizer.convert_tokens_to_string(tokens) def decode_token_ids(self, token_ids): tokens = self.tokenizer.convert_ids_to_tokens(token_ids) exclude_list = ['[PAD]', '[CLS]'] non_pads = [t for t in tokens if t not in exclude_list] result = "" for s in non_pads: if s.startswith("##"): result += s[2:] else: result += " " + s return result @property def cls(self): return self.cls_id @property def sep(self): return self.sep_id @property def pad(self): return self.pad_id @property def mask(self): return self.mask_id @property def bos_token(self): """ Beginning of sentence token id """ return self._bos_token @property def eos_token(self): """ End of sentence token id """ return self._eos_token @property def additional_special_tokens(self): """ All the additional special tokens you may want to use (list of strings).""" return self._additional_special_tokens @property def bos_token_id(self): """ Id of the beginning of sentence token in the vocabulary.""" return self._bos_token_id @property def eos_token_id(self): """ Id of the end of sentence token in the vocabulary.""" return self._eos_token_id @property def additional_special_tokens_ids(self): """ Ids of all the additional special tokens in the vocabulary (list of integers).""" return [self.vocab.get(token) for token in self._additional_special_tokens] @additional_special_tokens.setter def additional_special_tokens(self, value): self._additional_special_tokens = value class _GPT2BPETokenizer(AbstractTokenizer): """Original GPT2 BPE tokenizer.""" def __init__(self, vocab_file, merge_file): name = 'GPT2 BPE' super().__init__(name) self.tokenizer = GPT2Tokenizer(vocab_file, merge_file, errors='replace', special_tokens=[], max_len=None) self.eod_id = self.tokenizer.encoder['<|endoftext|>'] @property def vocab_size(self): return len(self.tokenizer.encoder) @property def vocab(self): return self.tokenizer.encoder @property def inv_vocab(self): return self.tokenizer.decoder def tokenize(self, text): return self.tokenizer.encode(text) def detokenize(self, token_ids): return self.tokenizer.decode(token_ids) @property def eod(self): return self.eod_id class _FalconTokenizer(AbstractTokenizer): """Wrapper of huggingface tokenizer.""" def __init__(self, vocab_extra_ids_list=None, new_tokens=True): name = 'FalconTokenizer' super().__init__(name) from transformers import AutoTokenizer self.tokenizer = AutoTokenizer.from_pretrained('tiiuae/falcon-40b') self._eod = self.tokenizer.vocab['<|endoftext|>'] if vocab_extra_ids_list and new_tokens: self.tokenizer.add_special_tokens({'additional_special_tokens': self.tokenizer.additional_special_tokens + vocab_extra_ids_list.split(",")}) self._inv_vocab = {idx: token for token, idx in self.tokenizer.vocab.items()} @property def vocab_size(self): return len(self.tokenizer.vocab) @property def vocab(self): return self.tokenizer.vocab def tokenize(self, text): return self.tokenizer.encode(text) def detokenize(self, token_ids): return self.tokenizer.decode(token_ids) @property def inv_vocab(self): return self._inv_vocab @property def eod(self): return self._eod class _SentencePieceTokenizer(AbstractTokenizer): """SentencePieceTokenizer-Megatron wrapper""" def __init__(self, model_file, vocab_extra_ids=0, vocab_extra_ids_list=None, new_tokens=True): name = 'SentencePieceTokenizer' super().__init__(name) import sentencepiece self._tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file) self._initalize(vocab_extra_ids, vocab_extra_ids_list, new_tokens) def _initalize(self, vocab_extra_ids, vocab_extra_ids_list, new_tokens): self._vocab = {} self._inv_vocab = {} self._special_tokens = {} self._inv_special_tokens = {} self._t5_tokens = [] for i in range(len(self._tokenizer)): t = self._tokenizer.id_to_piece(i) self._inv_vocab[i] = t self._vocab[t] = i def _add_special_token(t): if t not in self.vocab and not new_tokens: return if t not in self._vocab: next_id = len(self._vocab) self._vocab[t] = next_id self._inv_vocab[next_id] = t self._special_tokens[t] = self._vocab[t] self._inv_special_tokens[self._vocab[t]] = t _add_special_token('') self._cls_id = self._vocab.get('') _add_special_token('') self._sep_id = self._vocab.get('') _add_special_token('') self._eod_id = self._vocab.get('') _add_special_token('') self._mask_id = self._vocab.get('') pad_id = self._tokenizer.pad_id() try: pad_token = self._tokenizer.id_to_piece(pad_id) except IndexError: pad_token = '' _add_special_token(pad_token) self._pad_id = self._vocab.get(pad_token) bos_id = self._tokenizer.bos_id() try: bos_token = self._tokenizer.id_to_piece(bos_id) except IndexError: bos_token = '' _add_special_token(bos_token) self._bos_id = self._vocab.get(bos_token) eos_id = self._tokenizer.eos_id() try: eos_token = self._tokenizer.id_to_piece(eos_id) except IndexError: eos_token = '' _add_special_token(eos_token) self._eos_id = self._vocab.get(eos_token) for i in range(vocab_extra_ids): t = "".format(i) _add_special_token(t) self._t5_tokens += [t] if vocab_extra_ids_list: for t in vocab_extra_ids_list.split(","): _add_special_token(t) print("Special tokens: {}".format(self._special_tokens)) @property def vocab_size(self): return len(self._vocab) @property def vocab(self): return self._vocab @property def inv_vocab(self): return self._inv_vocab # From: # https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L89 def tokenize(self, text): ids = [] idx = 0 while 1: indices = {} for token in self._special_tokens: try: indices[token] = text[idx:].index(token) except ValueError: continue if len(indices) == 0: break next_token = min(indices, key=indices.get) next_idx = idx + indices[next_token] ids.extend(self._tokenizer.encode_as_ids(text[idx:next_idx])) ids.append(self._special_tokens[next_token]) idx = next_idx + len(next_token) ids.extend(self._tokenizer.encode_as_ids(text[idx:])) return ids # From: # https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L125 def detokenize(self, ids): text = "" last_i = 0 for i, id in enumerate(ids): if id in self._inv_special_tokens: text += self._tokenizer.decode_ids(ids[last_i:i]) + " " text += self._inv_special_tokens[id] + " " last_i = i + 1 text += self._tokenizer.decode_ids(ids[last_i:]) return text.strip() @property def cls(self): return self._cls_id @property def sep(self): return self._sep_id @property def pad(self): return self._pad_id @property def bos_token_id(self): return self._bos_id @property def bos(self): return self._bos_id @property def eod(self): if self._eod_id is not None: return self._eod_id return self._eos_id # in case noe eod we can patch this up with an eos @property def eos_token_id(self): if self._eod_id is not None: return self._eod_id return self._eos_id @property def eos(self): return self._eos_id @property def mask(self): return self._mask_id @property def additional_special_tokens_ids(self): return [self.vocab[k] for k in self._t5_tokens] class _AutoTokenizer(AbstractTokenizer): """AutoTokenizer for Hf Pretrained model loading.""" def __init__(self, tokenizer_name_or_path, vocab_extra_ids): from transformers import AutoTokenizer name = tokenizer_name_or_path super().__init__(name) hf_tokenizer_kwargs = {} if vocab_extra_ids > 0: # TODO @thomasw21 we might need to concatenate to a pre-existing list? hf_tokenizer_kwargs["additional_special_tokens"] = [f"" for _id in range(vocab_extra_ids)] self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, **hf_tokenizer_kwargs) self.encoder = self.tokenizer.get_vocab() self.decoder = {v: k for k, v in self.encoder.items()} @property def vocab_size(self): return len(self.tokenizer) # vocab_size doesn't contain additional tokens @property def vocab(self): # TODO @thomasw21 make sure that special tokens don't collapse with vocab tokens. return { **{special_token: self.tokenizer.convert_tokens_to_ids(special_token) for special_token in self.tokenizer.additional_special_tokens}, **self.tokenizer.vocab, } @property def inv_vocab(self): return {v: k for k, v in self.vocab.items()} def tokenize(self, text): # HACK: this was hanging for very large inputs (>1M chars) # chunking it into 100k chars max seems to make it much faster # WARNING: this might be breaking tokenization every once in a while CHUNK_MAX = 100000 if len(text) > CHUNK_MAX: tokens = [] for i in range(0, len(text), CHUNK_MAX): tokens += self.tokenizer.encode(text[i:i+CHUNK_MAX], add_special_tokens=False) # add special tokens to beginning and end if self.tokenizer.bos_token: tokens = [self.tokenizer.bos_token_id] + tokens if self.tokenizer.eos_token_id: tokens = tokens + [self.tokenizer.eos_token_id] return tokens else: return self.tokenizer.encode(text) def detokenize(self, token_ids): # extract string from HF return self.tokenizer.decode(token_ids) @property def eod(self): # TODO @thomasw21 might conflict with return self.eos @property def cls(self): candidate = self.tokenizer.cls_token_id return self._check_token_candidate(candidate) @property def sep(self): candidate = self.tokenizer.sep_token_id return self._check_token_candidate(candidate) @property def pad(self): candidate = self.tokenizer.pad_token_id return self._check_token_candidate(candidate) @property def mask(self): candidate = self.tokenizer.mask_token_id return self._check_token_candidate(candidate) @property def bos(self): raise NotImplementedError("Missing ") @property def eos(self): # TODO @thomasw21 might conflict with the notion of candidate = self.tokenizer.eos_token_id return self._check_token_candidate(candidate) @property def additional_special_tokens_ids(self): """ All the additional special tokens you may want to use (list of strings).""" return self.tokenizer.additional_special_tokens_ids @staticmethod def _check_token_candidate(candidate): if candidate is None: raise AttributeError("Token doesn't exist") return candidate