# BSD 3-Clause License # # Copyright (c) Soumith Chintala 2016, # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # code taken from # https://github.com/pytorch/vision/blob/main/torchvision/datasets/folder.py # added support for classes_fraction and data_per_class_fraction from torchvision.datasets import VisionDataset from PIL import Image import os import os.path from typing import Any, Callable, cast, Dict, List, Optional, Tuple import numpy as np def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool: """Checks if a file is an allowed extension. Args: filename (string): path to a file extensions (tuple of strings): extensions to consider (lowercase) Returns: bool: True if the filename ends with one of given extensions """ return filename.lower().endswith(extensions) def is_image_file(filename: str) -> bool: """Checks if a file is an allowed image extension. Args: filename (string): path to a file Returns: bool: True if the filename ends with a known image extension """ return has_file_allowed_extension(filename, IMG_EXTENSIONS) def make_dataset( directory: str, class_to_idx: Dict[str, int], data_per_class_fraction: float, extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> List[Tuple[str, int]]: """Generates a list of samples of a form (path_to_sample, class). Args: directory (str): root dataset directory class_to_idx (Dict[str, int]): dictionary mapping class name to class index extensions (optional): A list of allowed extensions. Either extensions or is_valid_file should be passed. Defaults to None. is_valid_file (optional): A function that takes path of a file and checks if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Defaults to None. Raises: ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None. Returns: List[Tuple[str, int]]: samples of a form (path_to_sample, class) """ instances = [] directory = os.path.expanduser(directory) both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") if extensions is not None: def is_valid_file(x: str) -> bool: return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) is_valid_file = cast(Callable[[str], bool], is_valid_file) for target_class in sorted(class_to_idx.keys()): class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class) if not os.path.isdir(target_dir): continue local_instances = [] for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root, fname) if is_valid_file(path): item = path, class_index local_instances.append(item) instances.extend(local_instances[0:int(len(local_instances) * data_per_class_fraction)]) return instances class DatasetFolder(VisionDataset): """A generic data loader where the samples are arranged in this way: :: root/class_x/xxx.ext root/class_x/xxy.ext root/class_x/[...]/xxz.ext root/class_y/123.ext root/class_y/nsdf3.ext root/class_y/[...]/asd932_.ext Args: root (string): Root directory path. loader (callable): A function to load a sample given its path. extensions (tuple[string]): A list of allowed extensions. both extensions and is_valid_file should not be passed. transform (callable, optional): A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. target_transform (callable, optional): A function/transform that takes in the target and transforms it. is_valid_file (callable, optional): A function that takes path of a file and check if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). samples (list): List of (sample path, class_index) tuples targets (list): The class_index value for each image in the dataset """ def __init__( self, root: str, loader: Callable[[str], Any], extensions: Optional[Tuple[str, ...]] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, classes_fraction=1.0, data_per_class_fraction=1.0, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> None: super(DatasetFolder, self).__init__(root, transform=transform, target_transform=target_transform) self.classes_fraction = classes_fraction self.data_per_class_fraction = data_per_class_fraction classes, class_to_idx = self._find_classes(self.root) samples = self.make_dataset(self.root, class_to_idx, self.data_per_class_fraction, extensions, is_valid_file) if len(samples) == 0: msg = "Found 0 files in subfolders of: {}\n".format(self.root) if extensions is not None: msg += "Supported extensions are: {}".format(",".join(extensions)) raise RuntimeError(msg) self.loader = loader self.extensions = extensions self.total = len(samples) self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.targets = [s[1] for s in samples] @staticmethod def make_dataset( directory: str, class_to_idx: Dict[str, int], data_per_class_fraction: float, extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> List[Tuple[str, int]]: return make_dataset(directory, class_to_idx, data_per_class_fraction, extensions=extensions, is_valid_file=is_valid_file) def _find_classes(self, dir: str) -> Tuple[List[str], Dict[str, int]]: """ Finds the class folders in a dataset. Args: dir (string): Root directory path. Returns: tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. Ensures: No class is a subdirectory of another. """ all_classes = [d.name for d in os.scandir(dir) if d.is_dir()] classes = all_classes[0:int(len(all_classes) * self.classes_fraction)] classes.sort() class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} return classes, class_to_idx def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ curr_index = index for x in range(self.total): try: path, target = self.samples[curr_index] sample = self.loader(path) break except Exception as e: curr_index = np.random.randint(0, self.total) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def __len__(self) -> int: return len(self.samples) IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') def pil_loader(path: str) -> Image.Image: # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') # TODO: specify the return type def accimage_loader(path: str) -> Any: import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path: str) -> Any: from torchvision import get_image_backend if get_image_backend() == 'accimage': return accimage_loader(path) else: return pil_loader(path) class ImageFolder(DatasetFolder): """A generic data loader where the images are arranged in this way: :: root/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png Args: root (string): Root directory path. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. is_valid_file (callable, optional): A function that takes path of an Image file and check if the file is a valid file (used to check of corrupt files) Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). imgs (list): List of (image path, class_index) tuples """ def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, classes_fraction=1.0, data_per_class_fraction=1.0, loader: Callable[[str], Any] = default_loader, is_valid_file: Optional[Callable[[str], bool]] = None, ): super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS if is_valid_file is None else None, transform=transform, target_transform=target_transform, classes_fraction=classes_fraction, data_per_class_fraction=data_per_class_fraction, is_valid_file=is_valid_file) self.imgs = self.samples