#!/bin/bash megatron_model="/mnt/scratch-artemis/kshitij/LLAMA/latest_megatron_codebase/spgi_vox_mls_text_1b/megatron_model" sharded_model="/mnt/scratch-artemis/kshitij/LLAMA/latest_megatron_codebase/spgi_vox_mls_text_1b/shards" tp="2" pp="1" repo="/mnt/scratch-artemis/kshitij/LLAMA/latest_megatron_codebase/multilinguality_megatron" vocab_size="37005" # Parse command-line arguments for arg in "$@" do case $arg in --help) echo "Usage: ./script.sh [OPTIONS]" echo "Options:" echo " --megatron_model=PATH Path to sharded megatron model" echo " --sharded_model=PATH Path to save sharded model." echo " --tp=NUMBER Number of shards to divide model in." echo " --pp=NUMBER Pipeline parallel (default is 1)" echo " --repo=PATH Path to repo" echo " --vocab_size=NUMBER Vocab size of model without padding" exit 0 ;; --megatron_model=*) megatron_model="${arg#*=}" shift ;; --sharded_model=*) sharded_model="${arg#*=}" shift ;; --tp=*) tp="${arg#*=}" shift ;; --pp=*) pp="${arg#*=}" shift ;; --repo=*) repo="${arg#*=}" shift ;; --vocab_size=*) vocab_size="${arg#*=}" shift ;; esac done python $repo/tools/checkpoint_util.py \ --target_tensor_parallel_size $tp \ --target_pipeline_parallel_size $pp \ --load_dir $megatron_model \ --save_dir $sharded_model \ --model_type llama \ --true_vocab_size $vocab_size \ --bf16