#!/bin/bash # Debug script for MDPO training in VSCode # This script sets up the environment and runs the training with debugging support # Environment Variables export RANK=1 export MASTER_PORT=29571 # Training Arguments export LOCAL_BATCH_SIZE=2 export GRADIENT_ACCUMULATION_STEPS=4 # Path Arguments export TRANSFORMERS_OFFLINE=1 export WANDB_PROJECT=vtimellm export MODEL_VERSION=vicuna-v1-5-7b export OUTPUT_DIR=./outputs/ export STAGE4=./outputs/vtimellm-vicuna-v1-5-7b-activitynet-stage4 export RUN_NAME=vtimellm-$MODEL_VERSION-activitynet-stage5 # Debug environment variables export PYTHONPATH="${PYTHONPATH}:$(pwd)" export CUDA_VISIBLE_DEVICES=1 export TORCH_USE_CUDA_DSA=1 # Enable debug logging export TRANSFORMERS_VERBOSITY=info export TOKENIZERS_PARALLELISM=false # Create output directory if it doesn't exist mkdir -p $OUTPUT_DIR/$RUN_NAME echo "=== Debug Environment Setup ===" echo "RANK: $RANK" echo "MASTER_PORT: $MASTER_PORT" echo "CUDA_VISIBLE_DEVICES: $CUDA_VISIBLE_DEVICES" echo "PYTHONPATH: $PYTHONPATH" echo "OUTPUT_DIR: $OUTPUT_DIR/$RUN_NAME" echo "================================" # Check if required files exist echo "=== Checking Required Files ===" required_files=( "./checkpoints/vicuna-7b-v1.5" "./data/activitynet/mdpo-train.json" "./data/activitynet/videos/train" "./data/activitynet/clipvitl14-vtimellm.pth" "./checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin" "./checkpoints/vtimellm-vicuna-v1-5-7b-stage2" "./checkpoints/vtimellm-vicuna-v1-5-7b-stage3" "./checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4" "./scripts/zero2.json" ) for file in "${required_files[@]}"; do if [ -e "$file" ]; then echo "✓ Found: $file" else echo "✗ Missing: $file" fi done echo "================================" # Check GPU availability echo "=== GPU Information ===" nvidia-smi --query-gpu=name,memory.total,memory.free --format=csv,noheader,nounits echo "================================" # Run the training with debugging support echo "=== Starting Debug Training ===" echo "Command: deepspeed --include localhost:$RANK --master_port $MASTER_PORT vtimellm/train/train_dpo_mem.py [args...]" echo "================================" # Execute the training command deepspeed --include localhost:$RANK --master_port $MASTER_PORT vtimellm/train/train_dpo_mem.py \ --deepspeed ./scripts/zero2.json \ --lora_enable True --lora_r 8 --lora_alpha 128 \ --training_stage 3 --finetuning True \ --model_name_or_path ./checkpoints/vicuna-7b-v1.5 \ --version v1 \ --data_path ./data/activitynet/mdpo-train.json \ --data_folder ./data/activitynet/videos/train \ --feat_folder ./data/activitynet/clipvitl14-vtimellm.pth \ --pretrain_mm_mlp_adapter ./checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin \ --stage2_path ./checkpoints/vtimellm-vicuna-v1-5-7b-stage2 \ --stage3_path ./checkpoints/vtimellm-vicuna-v1-5-7b-stage3 \ --stage4_path checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4 \ --output_dir $OUTPUT_DIR/$RUN_NAME \ --bf16 True \ --max_steps 100 \ --per_device_train_batch_size $LOCAL_BATCH_SIZE \ --gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \ --evaluation_strategy "no" \ --save_strategy "no" \ --save_steps 50000 \ --save_total_limit 10 \ --learning_rate 1e-6 \ --freeze_mm_mlp_adapter True \ --weight_decay 0. --warmup_ratio 0.1 --lr_scheduler_type "cosine" \ --logging_steps 1 \ --tf32 True \ --model_max_length 2048 \ --gradient_checkpointing True \ --dataloader_num_workers 4 \ --lazy_preprocess True \ --report_to "none" \ --run_name $RUN_NAME \ --gamma 0.0 --beta 0.5 --dpo_alpha 1.0 --train4dpo echo "=== Training Completed ==="